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We report three novel small RNA viruses uncovered
from cDNA libraries from parasitoid wasps in the
genus Nasonia. The genome of this kind of virus
is a positive-sense single-stranded RNA with a 3�

poly(A), which facilitates cloning from cDNAs. Two of
the viruses, NvitV-1 and NvitV-2, possess a RNA-
dependent RNA polymerase that associates them with
the family Iflaviridae of the order Picornavirales. A
third virus, NvitV-3, is most similar to the Nora virus
from Drosophila. A reverse transcription-PCR method
developed for NvitV-1 indicates that it is a persistent
commensal infection of Nasonia.
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Introduction

Current genomics efforts have expanded our understand-
ing of animal, plant and microbial biology in many
ways, quite frequently by providing new discoveries of
associated, previously unknown microorganisms, such as
viruses (Valles et al., 2004, 2008; Hunnicutt et al., 2006;
Hunter et al., 2006; Katsar et al., 2007).

Small viruses with a positive-sense single-stranded
RNA (ssRNA) genome, and no DNA stage, are known as
picornaviruses (infecting vertebrates) or picorna-like
viruses (infecting non-vertebrates). Recently, the order
Picornavirales was formally characterized to include most,
but not all, ssRNA viruses (Le Gall et al., 2008). Among
other typical characteristics – e.g. a small icosahedral
capsid with a pseudo-T = 3 symmetry and a 7–12 kb
genome made of one or two RNA segments – the Picor-
navirales genome encodes a polyprotein with a replication
module that includes a helicase, a protease, and an RNA-
dependent RNA polymerase (RdRp), in this order (see Le
Gall et al., 2008 for details). Pathogenicity of the infections
can vary broadly from devastating epidemics to appar-
ently persistent commensal infections. Several human
diseases, from hepatitis A to the common cold (e.g. rhi-
novirus, Hughes et al., 1988), are caused by members of
Picornavirales.

Besides vertebrates, ssRNA viruses also infect a broad
range of hosts, including arthropods, e.g. flies (Johnson &
Christian, 1998), moths (Wu et al., 2002), aphids (Moon
et al., 1998), leafhoppers (Hunnicutt et al., 2006; Hunter
et al., 2006) and others. Within the Hymenoptera, ants
(Valles et al., 2004, 2008), bees (Ellis & Munn, 2005), and
wasps (Reineke & Asgari, 2005) have been shown to be
infected with ssRNA viruses. The honey bee is known to
be infected by at least 18 different viruses (Allen & Ball,
1996), most of which are ssRNA viruses, and up to 4
viruses simultaneously (Chen et al., 2004, 2005). Para-
sitic wasps are frequently associated with viruses or virus-
like entities that enable them to evade or directly suppress
their hosts’ immune system. The wasp Venturia cane-
scens, family Ichneumonidae, has a picorna-like virus
(VcSRV) which was proposed to contribute to the wasp
endoparasitism of its host larvae (Reineke & Asgari,
2005).

Here, we describe the existence of three ssRNA viruses
identified by mining expressed sequences tags (ESTs)
from the wasp Nasonia vitripennis (Pteromalidae), provi-
sionally named herein as NvitV-1, NvitV-2, and NvitV-3.
Sequence analyses of RdRp of these viruses indicate
that they are novel insect infecting viruses (Baker &
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Schroeder, 2008; Le Gall et al., 2008). Two of them,
NvitV-1 and NvitV-2, belong to the order Picornavirales,
and probably to the family Iflaviridae. All current members
of the Iflaviridae are placed in a single genus Iflavirus
(Fauquet et al., 2005), however, similarities of NvitV-1 and
VcSRV from the ichneumonid wasp suggest that they may
form a new genus. NvitV-3, the only virus also found in
Nasonia giraulti ESTs, is most closely related to the Nora
virus from a dipteran host, Drosophila melanogaster
(Habayeb et al., 2006), and do not fall in the order Picor-
navirales (Le Gall et al., 2008). NvitV-3 was detected only
in ESTs prepared from cDNA of pupae and adult wasps,
while NvitV-2 was only detected in ESTs prepared from
cDNA of larvae. NvitV-1 was further characterized by a
reverse transcription-PCR (RT-PCR) assay, with results
indicating that NvitV-1 is a persistent infection found in all
tissues and life-stages tested. No detrimental symptoms
were noted on wasp colonies infected with these viruses.

Results

Bioinformatic detection and annotation of three viruses
in the Nasonia expressed sequence tags

Three novel ssRNA viruses were identified through
mining ESTs of N. vitripennis (Table 1). Bioinformatic

analysis of a set of sequences not matching the
assembled N. vitripennis genome (NV genome version
1.0; Werren et al., 2010) revealed high similarity to
picorna-like viruses (see below).

A sequence of 2789 bp, not including the poly(A),
was assembled for one of the viruses, NvitV-1 (GenBank
accession number FJ790486). NvitV-1 has an open
reading frame (ORF) of 2366 bp incomplete at the 5′. The
predicted polyprotein includes the partial sequence of a
protease and the complete RdRp, with an additional
423 bp at the 3′ untranslated region (3′ UTR; Fig. 1).
NvitV-1 was found in roughly equal frequencies in ESTs
from larval and pupal/adult stages (Table 1).

For NvitV-2, a sequence of 1523 bp (not including the
polyA) was assembled (GenBank accession number
FJ790487) which consists of an 1161 bp ORF and 362 bp
at the 3′ UTR (Fig. 1). The translated ORF has only a
partial sequence of the RdRp. There is a 48 bp tandem
repeat (three times) at the 3′UTR with unknown function.
All 10 NvitV-2 reads were present in ESTs generated from
larvae (Table 1).

Sequences of the third virus, NvitV-3, were assembled
in two contigs and one singleton (GenBank accession
FJ790488; Table 1), all of which present higher similarity
to the Drosophila Nora virus (Habayeb et al., 2006), and

Table 1. Number of expressed sequence tags
of viral origin in cDNAs prepared from two
life-stages of Nasonia vitripennis

Virus* Contig cDNA from adult and pupae cDNA from larvae Total

NvitV-1 NVCL18Contig1 43 36 79
NvitV-2 NVCL278Contig1 0 10 10
NvitV-3† NVCL3Contig1 374 1 375
NvitV-3 NVCL1797Contig1 2 0 2
NvitV-3 NVPDU05TR 1 0 1
Total viral reads 420 47 467
Total NV EST library‡ 8306 10 381 18 687

*GenBank accession numbers for NvitV-1 (FJ790486); NvitV-2 (FJ790487); NvitV-3 (FJ790488).
†Three reads were also detected in expressed sequence tags (ESTs) of Nasonia giraulti prepared
from cDNA of pupae and adults.
‡Total good quality reads excluding mitochondrial sequences.
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Figure 1. Schematic diagram showing genome organization of two kinds of ssRNA virus, an Iflavirus and the Nora virus. Nasonia single stranded RNA
viral sequences are aligned to the homologous regions. RdRp is RNA-dependent RNA polymerase.
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we assume they are all from a single virus. The larger
3′contig has one partial (tentatively ORF 3) and two com-
plete ORFs (tentatively ORFs 4 and 5); ORFs 4 and 5 are
homologous to ORF 4 of the Nora virus and they encode
uncharacterized products (Fig. 1). The other contig and
the singleton have partial sequences of the RdRp. This is
the only virus also found in the N. giraulti ESTs, however,
with a significantly smaller number of reads, only three.
The N. giraulti sequences are identical to those that origi-
nated from N. vitripennis. Interestingly, all of the reads, but
one, came from the pupal/adult cDNA libraries (Table 1).

The phylogenetic position of the Nasonia
picorna-like viruses

The conserved RdRp sequences have been used to
assist virus classification (Zanotto et al., 1996; Baker &
Schroeder, 2008). Phylogenetic inferences were per-
formed for the three Nasonia viruses along with another
22 diverse picornaviruses and picorna-like viruses
(Table 2). Figure 2 shows a Maximum Parsimony (MP)
reconstruction using the amino acid sequences of the
most conserved regions of RdRp.

The phylogenetic analysis showed that NvitV-1 forms a
well-supported clade with VcSRV, suggesting that this
cluster might represent a new genus within the family
Iflaviridae (Fauquet et al., 2005). However, NvitV-1 and
VcSRV have not been fully sequenced and await a full
diagnosis for taxonomic placement. NvitV-2 is also likely
to be a member of the Iflaviridae. As suggested by

genomic structure and despite the fact that NvitV-3 had a
significant amount of missing data (Table 3), the clustering
with Nora is well supported. The genomic structure of
NvitV-3 and Nora indicates they are not Picornavirales (as
defined by Le Gall et al., 2008).

The paraphyly of the Iflaviridae is somewhat surprising
because of the position of infectious flacherie virus (IFV).
It is worth noting that IFV is the prototype of the family
Iflaviridae (Isawa et al., 1998; Fauquet et al., 2005).
Reconstruction of basal nodes was problematic; basal
branches are poorly supported and reconstruction was
likely to be confounded by a high number of homoplasies.
Major clades were well-supported and congruent across
all phylogenetic analyses that were conducted, either
using DNA or protein sequences (data not shown). In
general, most well supported groupings are in agreement
with previous similar phylogenies (Habayeb et al., 2006;
Le Gall et al., 2008).

The eight conserved domains in the RNA-dependent
RNA polymerase protein

The predicted RdRp amino acid sequence of the three
Nasonia viruses were compared with seven other ssRNA
viruses (Table 3) and shown to contain the eight con-
served domains identified as common to the RdRp of
positive-strand RNA viruses (Baker & Schroeder, 2008).

The RdRp region across all eight characteristic protein
domains indicated that NvitV-1 and NvitV-2 are more
closely related to viruses in the family Iflaviridae than to

Table 2. Picorna-like virus included in this study

Virus name Abbreviation Family GenBank Accession Number*

Drosophila Nora virus Nora Unclassified ABC55268
Silkworm infectious flacherie virus IFV Iflaviridae BAA25371
Wasp Venturia canescens virus VcSRV Iflaviridae AAS37668
Moth Perina nuda virus PnPV Iflaviridae AAL06289
Honey bee Sacbrood virus SBV Iflaviridae AAD20260
Mite Varroa destructor virus 1 VDV-1 Iflaviridae AAP51418
Honey bee deformed wing virus DWV Iflaviridae CAD34006
Honey bee Kakugo virus KaV Iflaviridae BAD06930
Moth Ectropis obliqua virus EoPV Iflaviridae AAQ64627
Aphid Rhopalosiphum padi virus RhPV Dicistroviridae AAC95509
Honey bee black queen-cell virus BQCV Dicistroviridae AAF72337
Drosophila C virus DCV Dicistroviridae AAC58807
Cricket paralysis virus CrPV Dicistroviridae AAF80998
Kashmir bee virus KBV Dicistroviridae AAP32283
Honey bee Israel acute paralysis virus IAPV Dicistroviridae ACD01403
Acute bee paralysis virus ABPV Dicistroviridae AAN63804
Ant Solenopsis invicta virus SINV-1 Dicistroviridae AAU85375
Human hepatitis A virus HAV Picornaviridae P08617
Human rhinovirus 1B HRV-1B Picornaviridae BAA00168
Cowpea mosaic virus CPMV Comoviridae CAA25029
Maize chlorotic dwarf virus MCDV Sequiviridae AAB58882
Rice tungro spherical virus RTSV Sequiviridae AAA66056

*GenBank numbers refer to the polyprotein.
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viruses of other families (Table 3). NvitV-1 was found to
have the greatest overall similarity to RdRp of VcSRV
(found in an ichneumonid wasp), and then to VDV-1, and
deformed wing virus (DWV) from honey bees with 64%,
47% and 46% identities, respectively (for the conserved
regions used for phylogenetics). Only partial sequence
of the RdRp is available for the other two new Nasonia
viruses. NvitV-2 is most similar to SBV and clearly also
belongs to the family Iflaviridae. NvitV-3 is fairly distinct
at the amino acid sequences level, but shows higher
similarity to the Nora virus. These two viruses, NvitV-3
and Nora, are not members of the order Picornavirales, in
agreement with their genomic structure.

Reverse transcription-PCR based detection of NvitV-1

VcSRV, the closest virus to NvitV-1, was found to be
transmitted from the infected wasp V. canescens to the
parasitized caterpillar (Reineke & Asgari, 2005). A

RT-PCR assay was developed to diagnose the presence
of NvitV-1 and to test the hypothesis that it is transmitted
to the host fly pupae during parasitization by Nasonia.
Results show that NvitV-1 is present in all life stages
in both males and females (Fig. 3). The flesh fly host
Sarcophaga bullata was negative for NvitV-1 infection
after being stung by infected Nasonia (data not shown).
Therefore, NvitV-1 neither appears to be passed through
the venom nor passed during oviposition, although it is
clearly present in the Nasonia female reproductive tract
(Fig. 3).

Viral infection of NvitV-1 was not detected in two sibling
species of Nasonia, N. giraulti and Nasonia longicornis. A
closely related wasp Trichomalopsis sarcophagae also
tested negative for NvitV-1. Strains of the species tested
have been reared in the laboratory in close proximity with
the infected N. vitripennis strain for many years, suggest-
ing that either the NvitV-1 is species specific or requires a
more direct contact mode of transmission.
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Figure 2. Phylogenetic inference of picorna-like
viruses. The tree is the consensus of the two most
parsimonious trees (1621 steps) obtained using
conserved RNA-dependent RNA polymerase amino
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We failed to detect via RT-PCR the other two viruses
(data not shown). Some possible reasons are that they
could be transient infections or they could actually be
infections of the fly host. An alternative explanation is that,
in some cases, the viral titres are too low to be detected by
the method used. This later explanation seems not to
apply for NvitV-3 because of the very large number of
adult ESTs from this virus (Table 1).

Discussion

Insects and other arthropods are vectors of many human
(and economically important vertebrate) diseases. There-
fore, the association of virus with arthropods has long
been of interest (Koonin & Dolja, 1993, 2006; Forterre,
2006). In addition, many studies are now revealing that
arthropods harbour their own assemblage of viruses,

some of which can be vectored between hosts by para-
sitoids (López et al., 2002), while others are implicated in
suppression of host immunity or other host modifications
during parasitization (Bigot et al., 1997a; Schmidt et al.,
2001; Lawrence, 2002). The advent of genomics has
sped up novel virus discoveries in arthropods, which cer-
tainly provide new subjects for investigations of viral/host
interactions (e.g. Isawa et al., 1998; Ghosh et al., 1999;
Leat et al., 2000; van Munster et al., 2002). Here, we
described three viruses in the ESTs of the parasitoid
wasps Nasonia.

All three viruses are ssRNA viruses that were uninten-
tionally cloned during an EST project designed to identify
transcribed genes in Nasonia. The method used to gen-
erate ESTs clearly favours the purification and cloning of
ssRNA viruses, which have a single-stranded RNA
genome polyadenylated at the 3′ end similar to the

Table 3. Amino acid sequence alignments of the eight conserved domains of RNA-dependent RNA polymerase of the three Nasonia viruses (NvitV-1, -2,
-3) to members in the order Picornavirales: families: Sequiviridae, Dicistroviridae, and Iflaviridae

Virus Family Domain I Domain II Domain III Domain IV

MCDV Sequiviridae ECPKDERRKLSK TFTILPPEINILFRQYFGDFAAMIM VGINPENMEWSD GDYSKFDGIGD
ABPV Dicistroviridae DTLKDERRPIEK VFSNGPMDFSITFRMYYLGFIAHLM IGTNVYSQDWNK GDFSTFDGSLN
DCV Dicistroviridae DTLKDERRDIAK VFSAGPQHFVVAFRQYFLPFAAWLM VGTNVYSSDWER GDFGNFDGSLV
KaV Iflaviridae DCLKDTCLPVEK IFSISPVQFTIPFRQYYLDFMASYR IGIDVNSLEWTN GDYKNFGPGLD
VcSRV Iflaviridae ACLKDARIPNRK VFEMSPVDLTIAQRQFFMDFTVAYR IGINPDGKEWTQ ADYSGYGPRLS
NvitV-1 Iflaviridae SCLKDARIPIYK VFEMSPVDFTISQRQYFLDFYVAYQ IGINPDGPEWTE ADYSAYGPRLL
SBV Iflaviridae DTLKDERKLPEK VFCNPPIDYIVSMRQYYMHFVAAFM VGINVQSTEWTL IDYSNFGPGFN
NvitV-2 Iflaviridae ??????????EK VFSMSPVTASIVLRQYTLDLTSYLR IGINPDGPEWGK IDFSNFGPGLN
Nora Unclassified SKLKDQPIKIAQ VFHCIPVDLILFSGALYGPYKEAYT VGIDPKSVGWQQ ADYKNYDKYLH
NvitV-3 Unclassified SKLKDELVKPSK IFQSSPVEYVIYAKGLFNNFIRFFR MAIDPISYDWQE IDYKNFDKRTS

consensus xxxKDxxxxxx: xFxxxPxxx:xxxxxxxxxxxxxxx :.x:xx.xxWxx xD:xx:.xxxx

Virus Family Domain V Domain VI Domain VII Domain VIII

MCDV Sequiviridae CQGMPSGFAMTVIFNSFVNYYYLAMAW VVVYGDDNIV TSVSFLKRR PLDKTSIEER
ABPV Dicistroviridae THSQPSGNPATTPLNCFINSMGLRMVF IVSYGDDNVI EDVQYLKRK PLSMDTILEM
DCV Dicistroviridae THSQPSGNPFTVIINCLYNSIIMRLSW LITYGDDNVL EDIFFLKRK PLKIEVIYEM
KaV Iflaviridae PCGIPSGSPITDILNTISNCLLIRLAW LVCYGDDLIM QTATFLKHG NLDKVSVEGT
VcSRV Iflaviridae TCGLPSGNCETVERNSQTNSLYIRIAF LVTNGDDLIA EEASYLKRG PLEEASITDT
NvitV-1 Iflaviridae NTGMPSGNAGTVITNSECNSIYIRCAY MFSNGDDLIM EEATYLKRG PLERASITDT
SBV Iflaviridae KCGSPSGAPITVVINTLVNILYIFVAW LFCYGDDLIM LNSTFLKHG ALAWSSINDT
NvitV-2 Unclassified KSGSPSGAAITVEINSFVHLMYINICW GVVYGDDGIF SEMTFLKRS PIDPDSIVEC
Nora Unclassified NRGNKSGSYTTTIDNCLANDIYGLYAW SVAFGDDIIK ENLQFLKRG PLLQRSIEGP
NvitV-3 Unclassified ??????????????????????????? ?????????? ENVTFLKRY PLEKASIEAP

consensus xx:xxSGxxxTxxxNxxx:xxxxxxx: x.xxGDDx:x xxxx:LK:x x:xxxx:xxx
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Figure 3. Reverse transcription-PCR (RT-PCR)
assay for detection of NvitV-1. The virus NvitV-1 can
be detected in Nasonia vitripennis males and
females of different life stages, it is also detected in
the abdomen and in the female reproductive tract.
RT-PCR amplification of the ribosomal RP49 is
shown for comparison.
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targeted eukaryotic mRNA. The frequency of viral reads
varies broadly depending on the type of virus, life stage,
and species considered. However, it reaches 5% (NvitV-3
alone accounts for 4.5%) in the N. vitripennis pupal/adult
cDNA library (Table 1). Far fewer were detected for the
other two viruses and for the N. giraulti ESTs.

Modes of virus transmission vary widely, and host-to-
parasitoid transmission of viruses has been reported for
an iridovirus (López et al., 2002) and an ascovirus (Bigot
et al., 1997a,b). In that regard, NvitV-1 clustered with
VcSRV which has a proposed relationship with V. cane-
scens favouring the development of the parasitoid larvae
within parasitized host caterpillars (Reineke & Asgari,
2005). Such a relationship is well documented for polyd-
navirus (Shelby & Webb, 1999). Other types of parasitoid
wasp associated viruses have been shown to be immune
suppressors of the wasps’ parasitized hosts. An ascovirus
associated with the parasitoid wasp Diadromus pulchellus
modulates the metabolism, development, and defence
system of the wasp’s lepidopteran host Acrolepiopsis
assectella (Bigot et al., 1997a). Another example for a
symbiotic virus–wasp relationship is an entomopoxvirus
isolated from the braconid wasp Diachasmimorpha longi-
caudata that replicates in the wasp, but is pathogenic only
to the wasp’s dipteran host and may play a role in sup-
pression of the hosts’ immune system (Lawrence, 2002).
The parasitoids above are all endoparasitic, laying their
eggs within the host body, and therefore mechanisms to
suppress host immunity are required. In contrast, Nasonia
is an ectoparasite that lays its eggs on the surface of the
host pupa, albeit under the puparial wall. Nevertheless,
venoms are injected into the host that modifies cell physi-
ology in complex ways (Rivers et al., 1993). However,
RT-PCR of parasitized hosts did not detect the virus and,
currently, there is no evidence that NvitV-1 is involved in
these effects.

Diseases which could be attributed to these viruses
were never observed in any of the wasps nor in the
dipteran host in laboratory cultures. Nevertheless they
could still be pathogens of the parasitoid, N. vitripennis,
with relatively mild, or latent effects. It seems, however,
that the NvitV-1 virus described here is a persistent com-
mensal infection.

The intracellular bacteria Wolbachia were recently
shown to promote resistance to ssRNA viruses in Droso-
phila (Teixeira et al., 2008). Nasonia vitripennis is infected
by two types of Wolbachia and N. giraulti by three different
strains (Raychoudhury et al., 2009). The N. vitripennis and
N. giraulti strains used for EST production were both
infected with these Wolbachia. It is not known whether
Wolbachia in Nasonia can modulate ssRNA virus levels.
This will be an interesting area for future research and
may explain the failure to detect NvitV-2 and NvitV-3 by
RT-PCR.

Proper taxonomy relies on full viral genome sequencing
and knowledge of virion structure. The partial sequence of
two of the viruses, NvitV-1 and NvitV-2 contained sufficient
information to let us confidently place them in the newly
defined order Picornavirales (Baker & Schroeder, 2008;
Le Gall et al., 2008). The systematic position of NvitV-3 is
at the moment unclear, since there is only one other
similar virus, the also unplaced Nora virus found in Droso-
phila (Habayeb et al., 2006). Further, phylogenetic analy-
sis revealed that NvitV-1 was most closely related to
VcSRV, which may provide evidence for the creation of a
new genus (Table 3; Fig. 2). To our knowledge it is the only
other picorna-like virus of a parasitic wasp for which
sequence information is available. This kind of compara-
tive genetic analysis of information provides evidence for
evolutionary relationships among insect, mammalian and
plant picorna-like viruses (Isawa et al., 1998) and have
recently been used to re-evaluate members into the
order Picornavirales. By comparison of the RdRp protein
sequences, both NvitV-1 and VcSRV were more similar to
each other than to other members of the genus Iflavirus
(containing the insect-infecting RNA viruses; Table 3,
Fig. 2) and would therefore represent another clade within
the family Iflaviridae. Further support for this will depend
on full viral genome comparisons plus the discovery of
more viral members with strong homology to NvitV-1 and
VcSRV (Mayo, 2002; Fauquet et al., 2005). Genomic
comparisons will highlight contrasts to the genomes of the
Dicistroviridae and other insect viruses from the Picornavi-
rales where the capsid proteins are encoded in the 3′ part
and the non-structural proteins including the RdRp are at
the 5′ (Mayo, 2002; Fauquet et al., 2005).

The current genomic effort on the parasitoid Nasonia
(Werren et al., 2010) continues to provide new findings
from these small insects, which are emerging as a genetic
model system. The newly discovered viruses reported
here define new members and expand the taxonomy of
ssRNA viruses, and provide evidence for consideration
of creating a new virus genus within the Iflaviridae.
The Nasonia viruses also may turn out to be a safe,
easily manipulated system for the study of basic ssRNA
viral features and more specific virus–hymenopteran
interactions.

Experimental procedures

Nasonia expressed sequence tags

Details of ESTs generated from two species of Nasonia, N. giraulti
and N. vitripennis, will be presented elsewhere (Werren et al.,
2010). The strains used were RV2, N. giraulti, and AsymC(LbII),
N. vitripennis, both Wolbachia infected. In brief, for each species
two cDNA libraries were prepared, one from larvae and one
pupae/adults. cDNA libraries were prepared using ZAP-cDNA
library construction kit (Strategene, La Jolla, CA, USA), from
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isolate poly (A+) RNA (MicroPoly(A) Purist Kit, Ambion, Austin,
TX, USA) and directionally cloned into pBluescript II XR
vector (Strategene). Clones were 5′ sequenced. After removal of
sequences of mitochondrial origin (Oliveira et al., 2008), 18 687
good quality reads were assembled and annotated.

Wasps rearing, species and strains investigated

Pteromalidae wasps of the genus Nasonia and Trichomalopsis
were cultured in standard condition using the flesh fly Sar-
cophaga bullata as host. Three Nasonia species, N. vitripennis
(NV, strain AsymCX), N. giraulti (NG, strain RV2X), and N. longi-
cornis (NL, strain IV7X), and one Trichomalopsis, T. sarcoph-
agae, were investigated.

RNA purification

RNA was purified from the entire body or from dissected tissues
pulled from 5 individual wasps. Three different life stages were
investigated for both males and females: larvae, yellow pupae
(10 days old), and adults. In addition, different body parts were
assayed: male and female abdomens, and female reproductive
tracts. Three extractions of each sample were conducted to
produce independent biological replicates. In addition, RNA was
purified from both a stung (with Nasonia eggs removed) and
unstung single S. bullata pupa. Tissues were harvested and
immediately placed in RNAlater (Ambion) and stored at -20 °C.
Total RNA was extracted either using Trizol (Invitrogen, Carls-
bad, CA, USA) or with Invisorb Spin Tissue RNA purification Kit
(Invitek, Berlin, Germany) and poly(A) RNA isolated using the
mini volume protocol of the Dynabeads mRNA Direct Kit (Dynal
Biotech, Oslo, Norway). RNA was then quantified using a
Qubit fluorometer (Invitrogen) and a Quant-iT RNA Assay Kit
(Invitrogen).

Primer design and RT-PCR screening of NvitV-1

To test for the presence of the NvitV-1 virus, RNAs were first
converted to cDNA using SuperScript III Reverse Transcriptase
(Invitrogen), then amplified by PCR using virus-specific pri-
mers Picorna-a (5′ATTTATATTAGGTGTGCGTATCTTG3′) and
Picorna-b (5′CAGGACCGTGAGTATAAGCAAG3′). Thermal-
cycling conditions consisted of an initial denaturation at 94 °C for
2 min, followed by 40 cycles of 94 °C for 30 s, annealing at 50 °C
for 30 s, and extension at 68 °C for 60 s. This was followed by a
5 min final extension at 72 °C. Sequencing of the amplified
product verified that the primers were correctly amplifying a
fragment of the NvitV-1 virus sequence. Primers that amplify part
of the ribosomal RP49 sequence were used as control for the
RT-PCR assay (RP49F_1 5′CTTCCGCAAAGTCCTTGTTC3′
and RP49R_1 5′AACTCCATGGGCAATTTCTG3′).

Bioinformatic and phylogenetic analysis

The name, acronym, and sequence accession numbers of the 22
viruses used in this investigation are shown in Table 2. Protein
(and corresponding nucleotide sequences) of insect and plant
picorna-like viruses were obtained from GenBank. Blast searches
of the National Center for Biotechnology Information (NCBI)
databases were used to initially assign sequences homologies
(Altschul et al., 1997). Computational sequence analysis was

performed using either the GeneCodes software package
(Sequencher™, Ann Arbor, MI, USA) or the BioEdit Sequence
Alignment Editor (Hall, 1999).

Phylogenetic analyses were conducted on both amino acid
and nucleotide sequences spanning the 8 conserved domains
of the RdRp protein (Baker & Schroeder, 2008). ClustalW2
(Larkin et al., 2007) was used to generate initial alignments and
sequences were manually adjusted (final alignment is available
upon request). Phylogenetic relationships were reconstructed
using a 1000 random addition (TBR swapping) in PAUP* v4.0b10
(Swofford, 2003). Branch support was accessed with 100 boot-
strap replicates.
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