

PROPOSING A NEW U.S. DAIRY HERD SUSTAINABILITY METRICS PLATFORM

Asha M. Miles, Kristen Parker Gaddis, Robert H. Fourdraine

46th ICAR & Interbull Meeting 2024 May 23, 2024, Bled, Slovenia

BUILDING ON ICAR EFFORTS

Farm sustainability covers many areas: energy use, water use, soil health, animal health, production, etc.

ICAR has focused on information collected through milk recording as it relates to sustainability.

Quantitative measures that directly relate to agriculture sustainability are preferable to qualitative measures

Developed a list of 43 key traits and standardized calculations on how these traits can be calculated.

PROOF OF CONCEPT

Data Supplied from U.S. Records Processing Centers

ICAR SUSTAINABILITY TASK FORCE TRAIT CATEGORIES

FEEDING & PRODUCTION

AVG DIM

N = 10,003

FERTILITY

AVG CALVING INTERVAL

N = 9,905

HEALTH

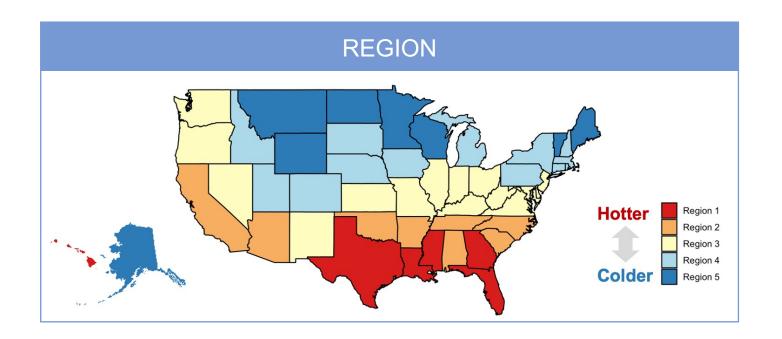
AVG SCC

N = 9,830

LONGEVITY

AVG CULLING AGE

N = 10,041


YOUNG STOCK

AVG AGE FIRST CALVING

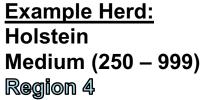
N = 10,095

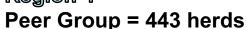
DEFINING PEER GROUPS

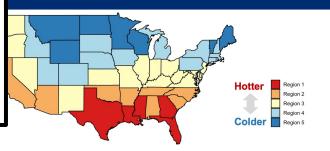
Three Strata Capture Varied U.S. Systems

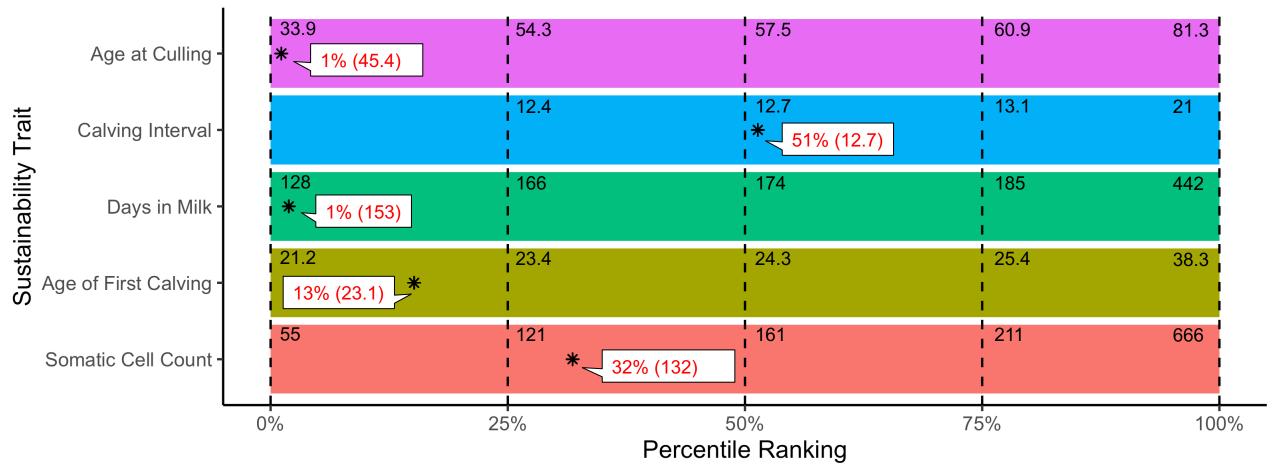

MAJOR DAIRY BREEDS

Holstein
Jersey
Brown Swiss
Ayrshire
Guernsey
Milking Shorthorn

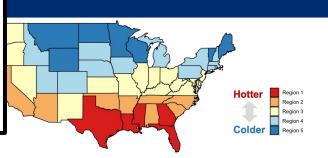

HERD DEMOGRAPHICS

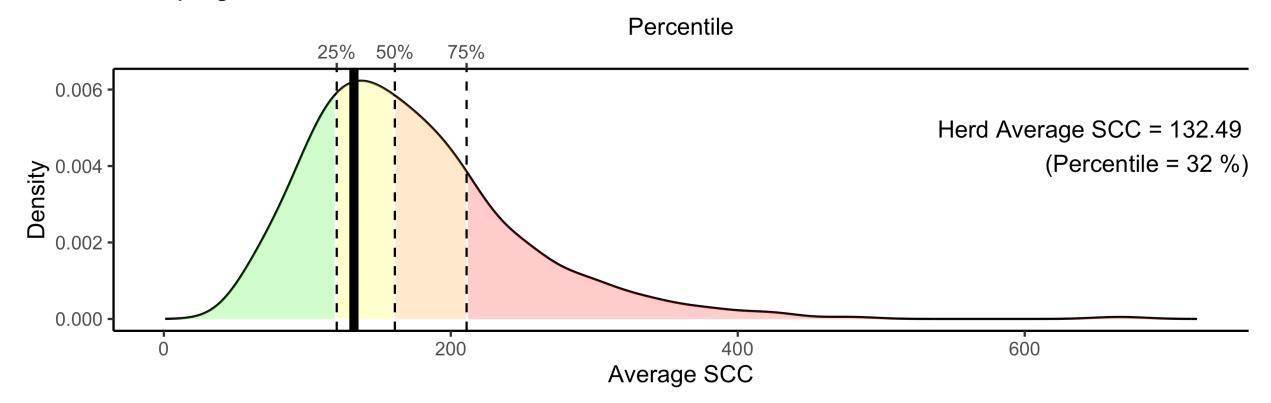

S < 250 **M** 250 – 999 **L** 1000+




	R1			R2			R3			R4			R5		
	S	M	L	S	M	L	S	M	L	S	M	L	S	M	L
AY							7			22			14		
BS				4			30			23	3		33	4	
DL										2					
FL													1	2	
GU	1						7			17	1		26	2	
НО	46	34	19	61	68	206	900	193	55	3248	443	213	1938	629	165
JE	6	2	3	28	18	34	108	18	3	131	18	7	105	15	4
MS				1			1			2			4		
WW													3		
XB							1								
XD						4				1			1		
XX	20	17	14	34	8	24	208	26	11	407	51	18	302	41	11

EXAMPLE: PERCENTILES




EXAMPLE: SCC

Curve Shaded by Percentiles

Histogram of average SCC Grouping: HO R4 M

Example Herd:
Holstein
Medium (250 – 999)
Region 4
Peer Group = 443 herds

EXAMPLE: SCC

Curve Shaded by Ranges of Actual Values

Histogram of average SCC Grouping: HO R4 M 0.006 Herd Average SCC = 229 (Percentile = 82 %) 0.004 0.002 0.000 200 300 400 500 100 600 Average SCC

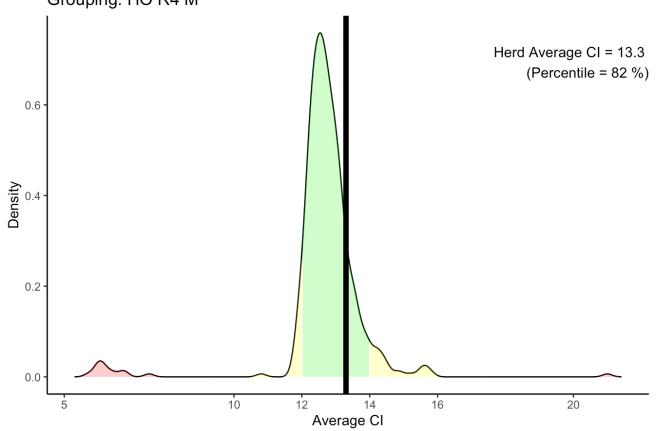
Example Herd:

Holstein

Medium (250 – 999)

Region 4

Peer Group = 443 herds

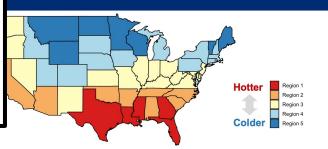


Percentile rankings are limited because someone must be last – even if their actual value is perfectly acceptable!

EXAMPLE: CI

Curve Shaded by Ranges of Actual Values

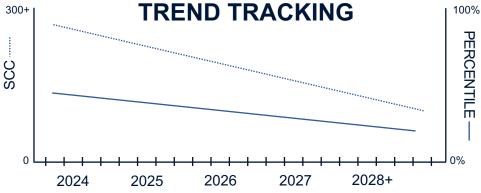
Histogram of average calving interval Grouping: HO R4 M



Holstein

Medium (250 – 999)

Region 4


Peer Group = 443 herds

The next challenge is industry consensus on optimal values for each trait

EXPANDING TO OTHER TRAITS

Relative Ease of Implementation

M	Ε	D	IU	M

Milk Urea Nitrogen Rates

% Cows Culled (Reproductive)

% Cows Fertility Disorders

Chronic Infection Rate

Dry Cow Cure Rate

Fresh Cow Infection Rate

% Cows Culled (Udder Health)

% Cows Culled (Lameness)

% Cows Culled (Other)

% Cows FPR < 1 @ 1st Test Day

% Cows FPR >1.3/1.5 @ 1st Test Day

% Cows with Lameness

% Cows with Mastitis

% Cows with Subclinical Metabolic

Daily Production of Culled Animals

Lifetime Production of Culled Animals

% Died at <60 DIM

% Female Young Stock Involuntary Culled

% Female Calves (Diarrhea)

% Female Calves (Respiratory Disease)

EASY

Energy Corrected Milk
Days Open

1st Service Conception Rate
Lactation Number
Young Stock EBV Ranking
Young Stock Sire EBV Ranking
% Calves Born Dead

HARD

Apparent Pregnancy Loss Rate Pregnancy Rate

NO DATA

Age at slaughter (beef), Body Weight, Daily Gain, Dry Matter Intake, Feed Efficiency, Methane Emissions, % Cows with Functional BCS, Non-return Rate 56 d, Selective Dry Cow Therapy Rate

One of the last coal-powered sheep. Most sheep are all electric now.

Dairy producers need a seat at the table

THE BOTTOM LINE

- ICAR has defined 43 traits related to dairy sustainability
- We can leverage DHI data to quantify these traits at the herd level and track progress over time
- These metrics (provided confidentially to each herd) would be a tool that empowers producers to advocate for their operation in sustainability conversations