

BEEF ON DAIRY

Current use, outcomes, and implications for genetic evaluations

Asha M. Miles, PhD | Research Geneticist

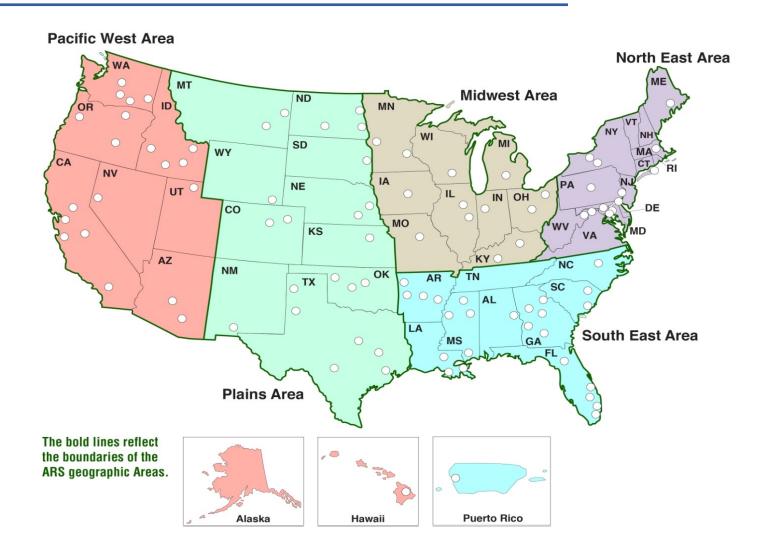
Animal Genomics & Improvement Laboratory USDA Agricultural Research Service Beltsville, MD 20705

asha.miles@usda.gov

TOPICS FOR DISCUSSION

- Setting the stage
 - What is USDA-ARS
 - Who AGIL is, what we do

- Beef x Dairy
 - Why crossbreeding
 - Breeding strategies
 - Usage statistics
 - Implications
 - Needs moving forward


AGRICULTURAL RESEARCH SERVICE (ARS)

Mission:

ARS delivers scientific solutions to national and global agricultural challenges

USDA's largest intramural scientific agency

- 1,800 PhD scientists
- 8,000 employees
- ~670 research projects
- \$1.5 billion budget

ARS NATIONAL PROGRAMS

Natural Resources & Sustain. Agric. Sys. (~19%)

- Water Availability & Watershed Management
- Soil & Air
- Grass, Forage & Rangeland Agroecosystems
- Sustainable Agriculture
 Systems Research

& Protection (~38%)

- Plant Genetic
 Resources, Genomics
 & Genetic
 Improvement
- Plant Diseases
- Crop Protection & Quarantine
- Crop Production

Animal Production & Protection (~17%)

- Food Animal Production
- Animal Health
- Veterinary, Medical, & Urban Entomology
- Aquaculture

Nutrition, Food Safety & Quality (~26%)

- Human Nutrition
- Food Safety
- Quality & Utilization of Agricultural Products

BELTSVILLE AGRICULTURAL RESEARCH CENTER

ANIMAL GENOMICS & IMPROVEMENT LAB

Mission:

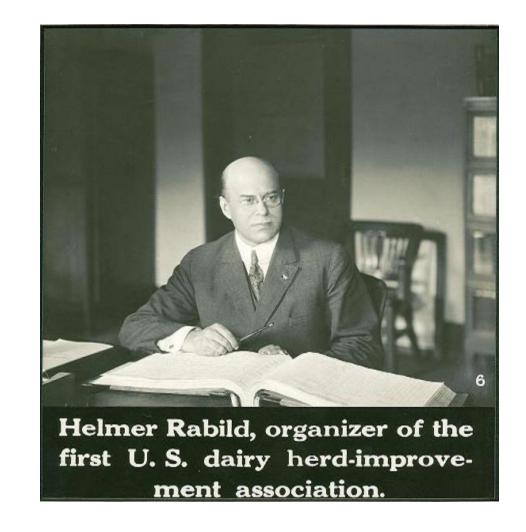
Discovers and develops improved methods for the genetic and genomic evaluation of economically important traits of dairy animals and small ruminants and conducts fundamental genomics-based research aimed at improving their health and productive efficiency.

Personnel (3 Projects):

- 10 SYs (NP 101). One SY position is currently vacant.
- 3 post-docs (additional post-doc being hired)
- 7 support scientists, 4 technicians, 1 administrative professionals, 1 IT specialist
 - 3 support scientist positions are vacant (two will be hired soon)

ANIMAL GENOMICS & IMPROVEMENT LAB

Improving Dairy Animals by Increasing Accuracy of Genomic Prediction, Evaluating New Traits, and Redefining Selection Goals


Improving Feed Efficiency and Environmental Sustainability of Dairy Cattle through Genomics and Novel Technologies

Enhancing genetic merit of ruminants through improved genome assembly, annotation, and selection

1908 USDA Bureau of Animal Industry organized cow testing associations nationally

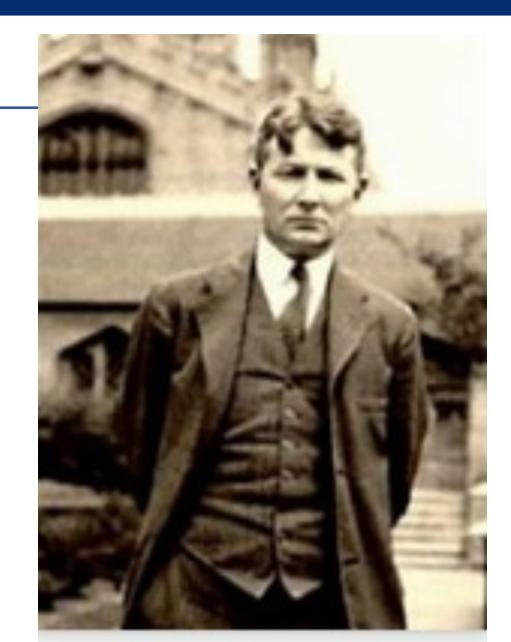
1915 Some bull associations calculated daughter-dam differences for their own bulls

1926 USDA calculated sire evaluations for 23 bulls and sent results directly to each bull's owner

Sewall Wright

Year	Biography	Location
1889	Born	MA
1892	Raised	Galesburg, IL
1911	B.S.	Galesburg, IL
1912	M.S.	U. IL, Urbana
1915	PhD	Harvard U., MA
1916	USDA	Beltsville, MD
1926	Professor	Chicago, IL
1955	Retired	Madison, WI
1988	Died	Madison, WI

	Year	Research discoveries at USDA
/	1917	Cattle color inheritance
	1920	Heritability (h²)
	1920	Livestock breeding (75-page book)
	1921	Systems of mating
	1921	Multiple regression accuracy (R ²)
	1921	Effective population size
	1921	Correlation is not causation
	1922	Inbreeding coefficient (F)
	1923	Path coefficients
\bigvee	1925	Computing relationships and F


Wright, S. 1922. Coefficients of inbreeding and relationship. The American Naturalist 56:330-338.

COEFFICIENTS OF INBREEDING AND RELATIONSHIP

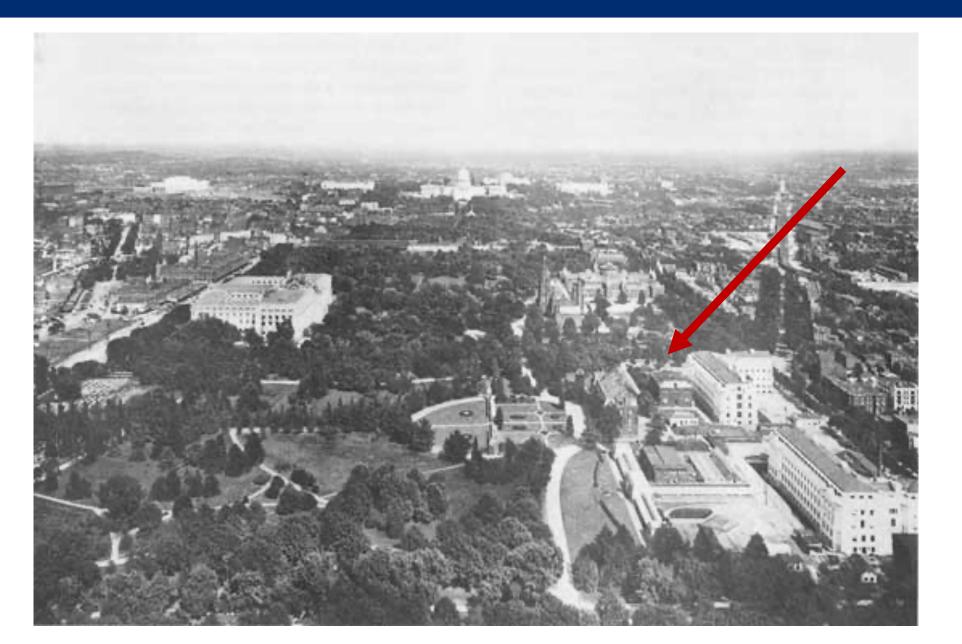
DR. SEWALL WRIGHT

BUREAU OF ANIMAL INDUSTRY, UNITED STATES DEPARTMENT
OF AGRICULTURE

In the breeding of domestic animals consanguineous matings are frequently made. Occasionally matings are made between very close relatives—sire and daughter, brother and sister, etc.—but as a rule such close inbreeding is avoided and there is instead an attempt to concentrate the blood of some noteworthy individual by what is known as line breeding. No regular system of mating such as might be followed with laboratory animals is practicable as a rule.

1935 Milk records available for ~2% of dairy cows

Breed	U. S. DEPARTMENT OF AGRICULTURE Agricultural Research Administration Bureau of Dairy Industry Record of first 305 days of Lactation				
Cow - Reg. No.	Date of Birth Sire - Reg. No. Dam - Reg. No.				
Owner		_			
P.O. Address	State	_			
	3x 4x				
Calving date D	ays in Days Milked lbs. Milk lbs. Fat Milk				
Remarks concerni	g record				
BDIM- 960	Signed				


U. S. Department of Agriculture
Agricultural Research Administration
Bureau of Dairy Industry
Washington, D. C.

Official Business

Penalty for Private Use to avoid payment of Postage, \$300

BUREAU OF DAIRY INDUSTRY
U. S. Department of Agriculture
Agricultural Research Administration
Washington, D. C.

~1908

2020

- 1962 Sire evaluations computed with herdmate comparison
- 1964 National evaluations replaced regional processing center evaluations
- 1989 Animal model implemented considering relationships among all cows and bulls
- **2009** First official genomic evaluations
- **2013** Calculation and distribution of evaluations transferred to Council on Dairy Cattle Breeding

Dairy-Herd-Improvement Letter

ARS-44-147 (Vol. 40, No. 5)

June 1964

RESUME OF 1963-64

Genetic Appraisal of Sires

As planned (ARS-44-131), quarterly sire evaluations were made during fiscal year 1964. These genetic appraisals were based on 16,959 non-AI and 5,454 AI sire evaluations. Collectively, they resulted in 66,383 individual sire records (OHIA-1202's) for the cooperating States and were based on 1,911,102 lactation records reported since the last evaluation in 1962-63. A further summary of the quarterly sire evaluation is shown in table 1.

Genetic Appraisal of Cows

The initial DHIA Cow Index List (ARS-44-139) was produced in April 1964 and the second (ARS-44-146) in June. These indexing procedures are used to evaluate and recognize genetically superior cows. The cows and levels represented in the two lists which represent 10,147 evaluations after screening approximately 500,000 potential qualifiers are as follows:

	Minimum	Cow Inc	dexes
Breed	Level 1/	ARS-44-139	ARS-44-146
	Milk Lbs.	No.	No.
Avrshire	1,995	72	97
Guernsey	1,312	408	586
Holstein	1,711	2,392	5,409
Jersey	1,189	386	512
Brown Swiss	1,586	127	151
Milking Shorthorn	1,350	2	5
Total		3,387	6,760

I/ Index equated to genetic superiority over herdmates. The average index value of all cows was in excess of 2,000 pounds of milk.

Issue: July 1964

2022 NATIONAL EVALUATION SYSTEM

Lactation, Reproduction, Health, Calving, Test-day, Yearly Average, Herd Info

Lactation, Reproduction, Health, Calving, Test-day, Yearly Average, Herd Info

Breed Associations

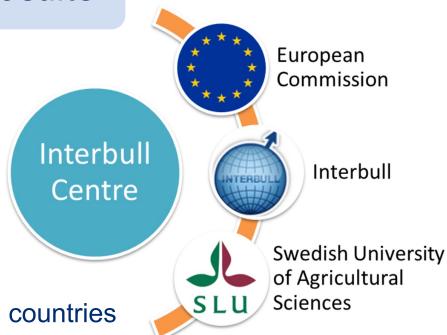
Pedigrees, Conformation


Ayrshire

Brown Swiss

Guernsey

Holstein


Lactation, Reproduction, Health, Calving, Test-day, Yearly Average, Herd Info

Breed Associations

Pedigrees, Conformation, Holstein

Interbull Centre

International Pedigrees, GMACE results

36 participating countries

Lactation, Reproduction, Health, Calving, Test-day, Yearly Average, Herd Info

Breed Associations

Pedigrees, Conformation, Holstein

Interbull Centre

International Pedigrees, GMACE results

NAAB

NAAB AI codes, Bull Controlling

Lactation, Reproduction, Health, Calving, Test-day, Yearly Average, Herd Info

Breed Associations

Pedigrees, Conformation, Holstein

Interbull Centre

International Pedigrees, GMACE results

NAAB

NAAB AI codes, Bull Controlling

Genomic Nominators

Genotyped Animals ID, Pedigree

Genomic Laboratories

Genotypes

Lactation, Reproduction, Health, Calving, Test-day, Yearly Average, Herd Info

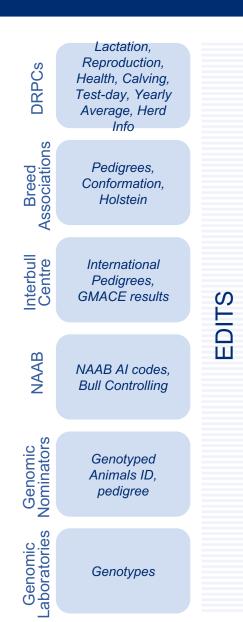
Breed Associations

Pedigrees, Conformation, Holstein

Interbull Centre

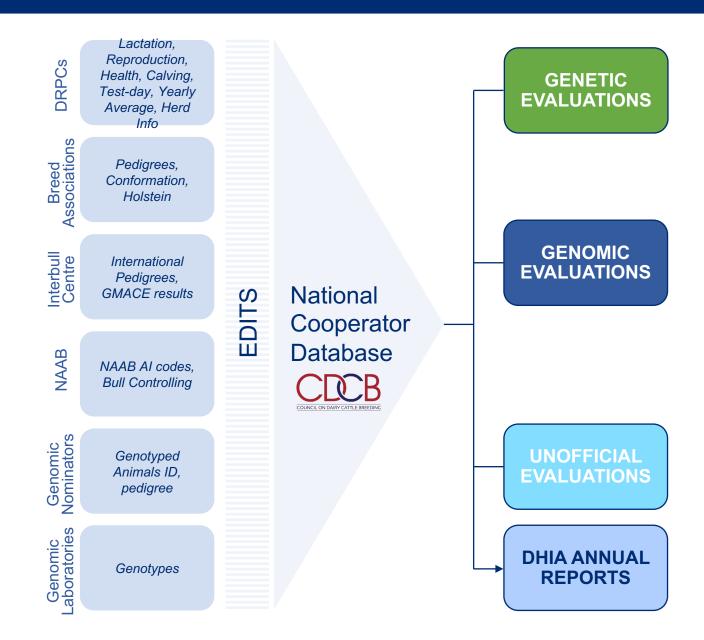
International Pedigrees, GMACE results

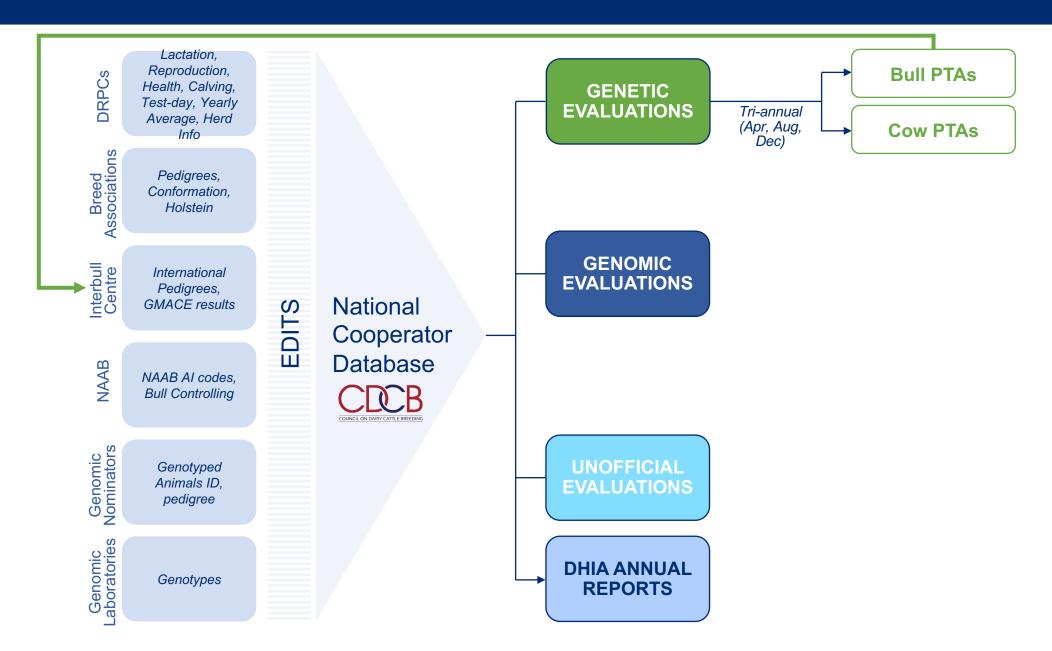
NAAB

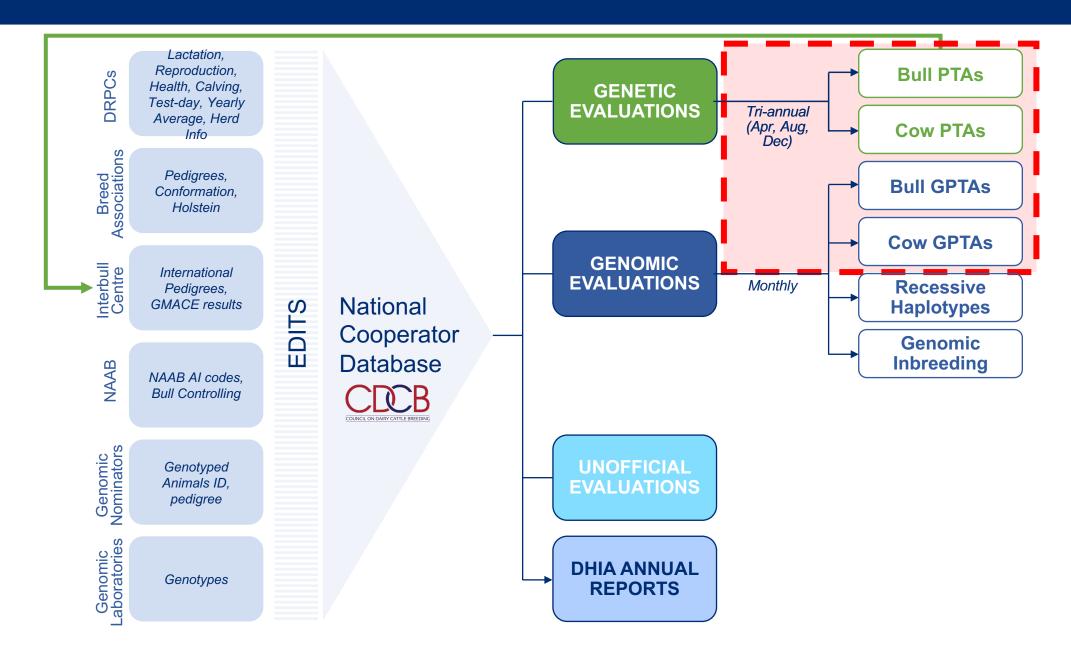

NAAB AI codes, Bull Controlling

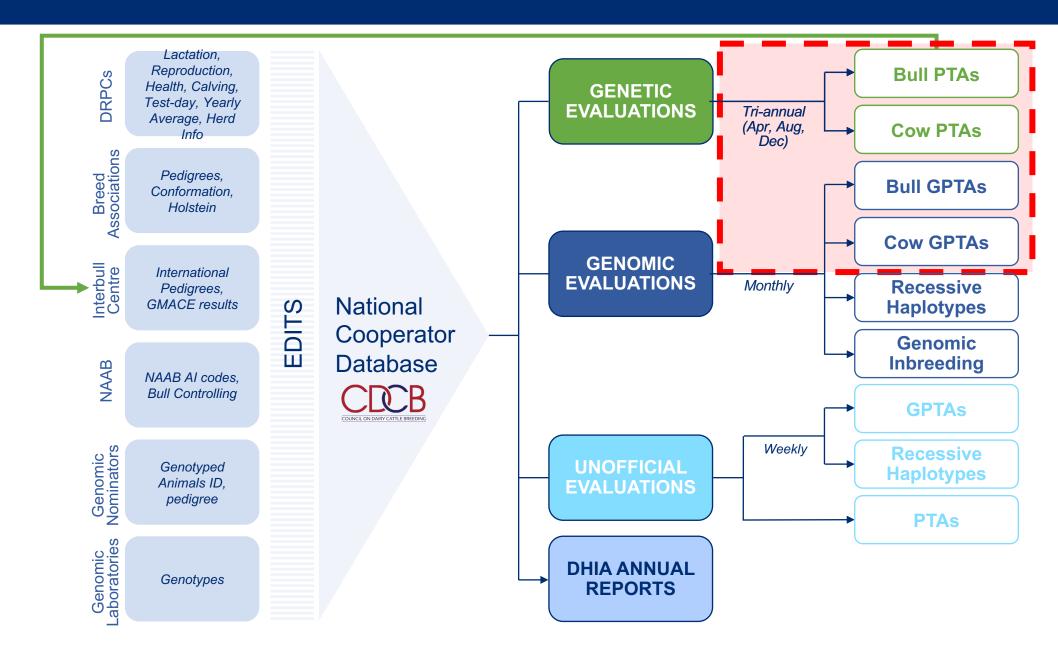
Genomic Nominators

Genotyped Animals ID, Pedigree


Genomic Laboratories


Genotypes




National Cooperator Database

- > 100 million LACTATIONS
- > 90 million PEDIGREES
- > 6 million GENOTYPES

NET MERIT (NM\$)

Relative values in 2021 NM\$ for each:

Yield Traits

Productive Life

Somatic Cell Score

Body Weight Composite

Udder Composite

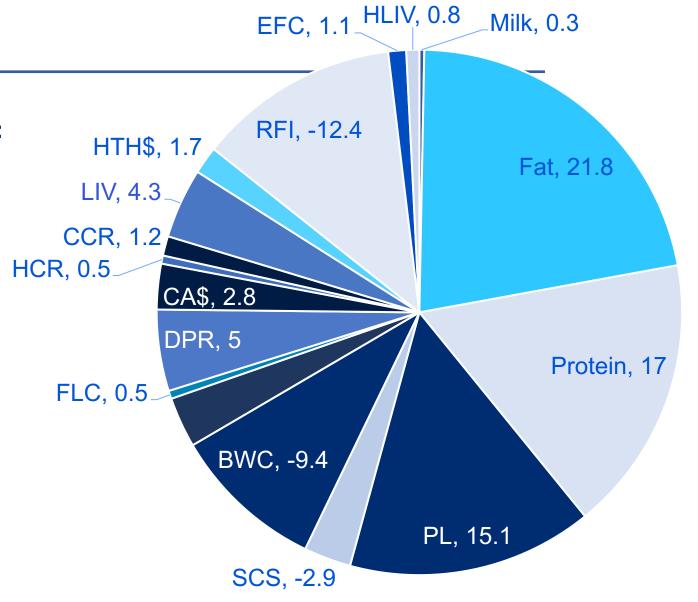
Feet/Legs Composite

Daughter Pregnancy Rate

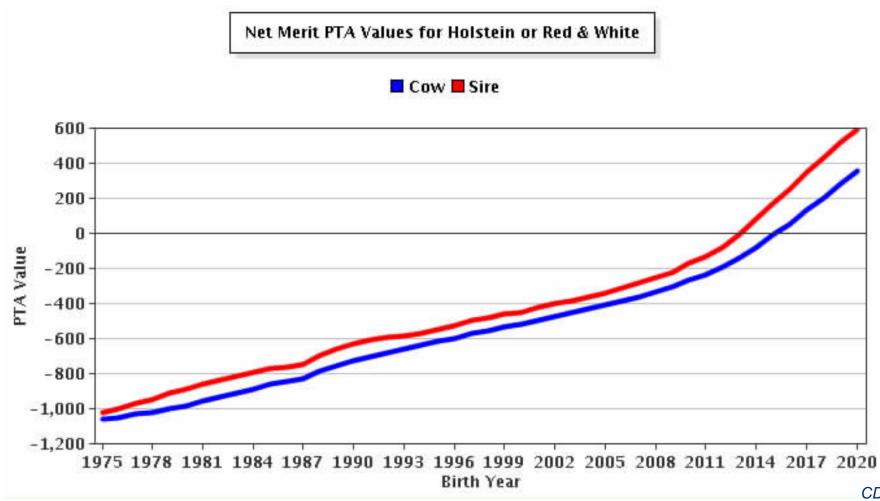
Calving Ability

Heifer Conception Rate

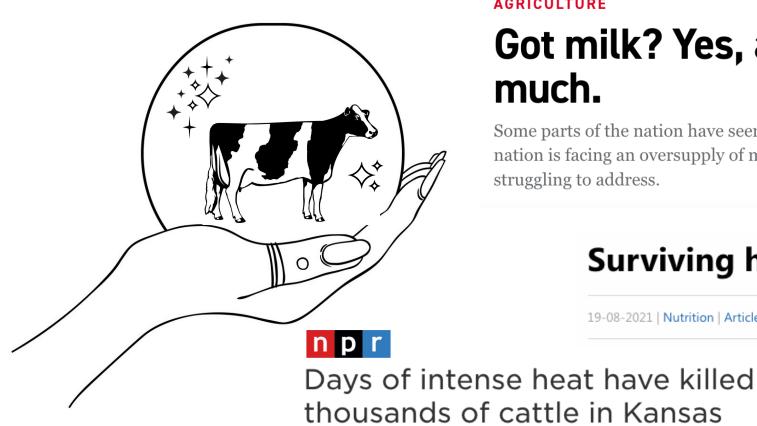
Cow Conception Rate


Livability

Health Traits


Feed Saved

Early First Calving


Heifer Livability

NET MERIT (NM\$)

GENETIC SELECTION IN A CHANGING WORLD

POLITICO

AGRICULTURE

Got milk? Yes, actually, U.S. has too much.

Some parts of the nation have seen localized spikes in milk prices. But most of the nation is facing an oversupply of milk — a challenge policy makers have been struggling to address.

DAIRY GLOBAL

Surviving high North American feed prices

19-08-2021 | Nutrition | Article

EMERGENCE OF BEEF x DAIRY

Beef x dairy: The merging of two paradigms

Cathy Bandyk November 8, 2021

EDITOR'S PICK

By David Murray May 27, 2022 Updated Jun 1, 2022 💂 0

Mating Decisions for Beef x Dairy Crosses Just as Important as Conventional

WESTERN Farmer-Stockman

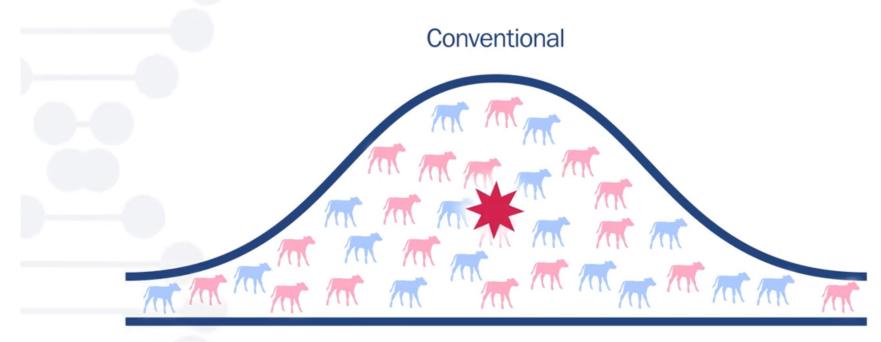
Why beef on dairy?

BEEF x DAIRY VALUE ADDED

Better G:F Ratio

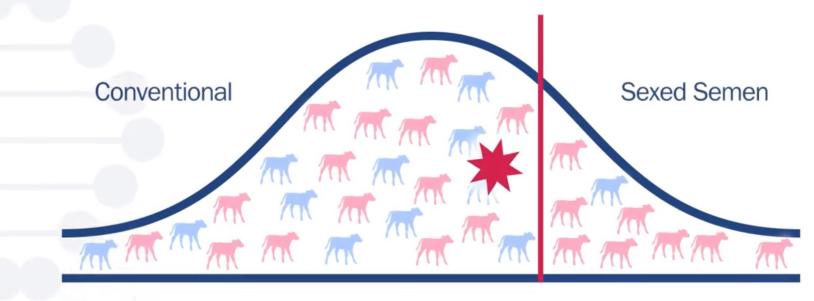
- ↑ Average Daily Gain
- ↑ Dry Matter Intake

Better Boxed Beef Value

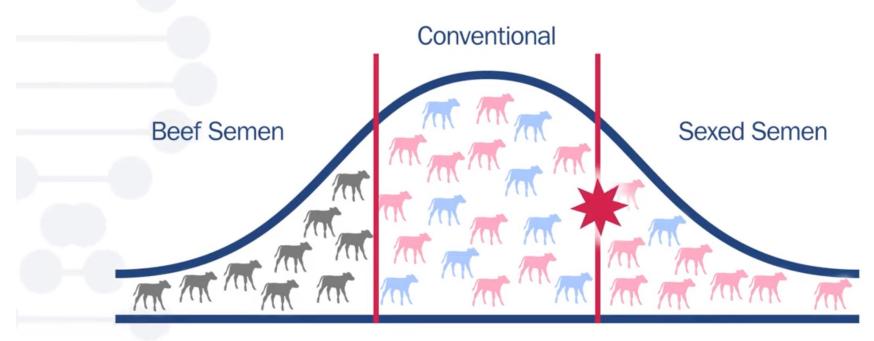

- ↑ carcass weights
- ↑ dressing percentage
- ↑ backfat thickness
- ↑ marbling score
- ↑ red meat yield

Jersey x Angus Ribeye

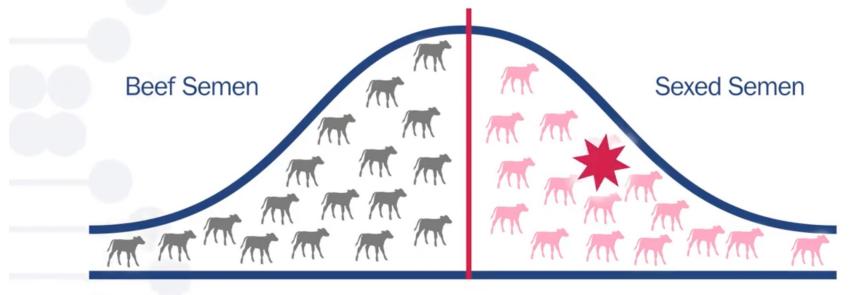
https://www.canr.msu.edu/news/crossbreeding-jersey-cows-with-a-beef-sire-increases-the-value-of-crossbred-jersey-calves-compared-with-purebred-jersey-steers-when-raised-for-beef-production


Historical Heifer Creation Before Sexed Semen

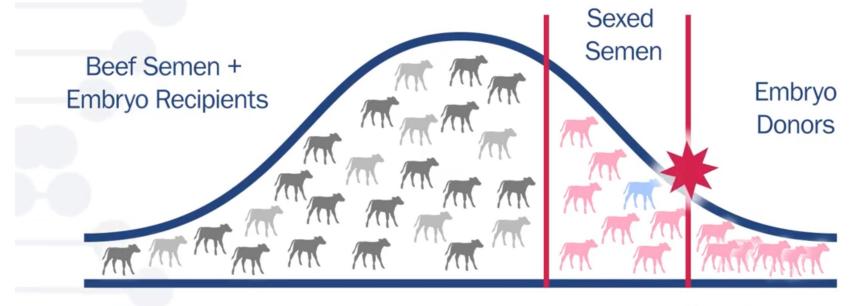
Worst Females


Strategic Heifer Creation

Worst Females


Strategic Heifer and Value creation

Worst Females


Progressive Heifer and Value Creation

Worst Females

Genetically Superior Heifer Creation

Worst Cows Best Cows

DAIRY SEMEN SALES ARE DOWN

DOMESTIC DAIRY SEMEN SALES (1)

UNITS OF SEMEN

BREED	2021	2020	<u>%+/-</u>
HOLSTEIN	13,781,519	14,909,469	-7.57%
JERSEY	2,690,868	2,835,675	-5.11%
R&W/RED HOLSTEIN	253,451	261,598	-3.11%
HOLSTEIN-RED CARRIER	159,462	163,652	-2.56%
BROWN SWISS	71,659	102,143	-29.84%
AYRSHIRE	28,301	29,063	-2.62%
GUERNSEY	19,428	22,690	-14.38%
MILKING SHORTHORN	11,813	14,202	-16.82%
OTHER DAIRY	138,294	45,989	200.71%
TOTAL	17,154,795	18,384,481	-6.69%

From: NAAB Domestic Semen Sales Report 8/5/2022

BEEF SEMEN SALES ARE UP

DOMESTIC BEEF SEMEN SALES (1)

UNITS OF SEMEN

BREED	2021		
ANGUS	4,601,465	3,696,283	24.49%
SIMMENTAL	1,178,912	1,150,684	2.45%
LIMOUSIN	653,508	664,944	-1.72%
CHAROLAIS	597,673	381,103	56.83%
RED ANGUS	126,178	127,903	-1.35%
WAGYU	108,613	69,343	56.63%
POLLED HEREFORD	90,340	89,489	0.95%
HEREFORD	9,230	13,297	-30.59%
HEREFORD (BLACK)	9,121	60	15101.67%

*truncated table

INSEMINATION FREQUENCIES (2021)

	AY	BS	GU	НО	JE
[same dairy breed]	3,617	16,358	5,318	2,285,706	123,842
Angus	1,468	627	128	1,017,436	107,632
XB	12	100	6	172,551	10,544
Limousin	32	146	18	147,622	26,095
Simmental	35	297	2	120,368	49,371
Charolais	4	159	2	50,797	54,310
Wagyu	1	37	11	46,478	15,911

AVERAGE DYSTOCIA (2021)

Reported on scale 1 -5 averages shown below

	AY	BS	GU	НО	JE
[same dairy breed]	1.39	1.35	1.4	1.37	1.38
Angus	1.38	1.39	1.37	1.38	1.44
XB	1.5	1.73	1	1.39	1.38
Limousin	1.31	1.49	1.56	1.41	1.38
Simmental	1.37	1.32	1.5	1.37	1.33
Charolais	1.25	1.4	2.5	1.39	1.4
Wagyu	1	1.35	1.18	1.35	1.39

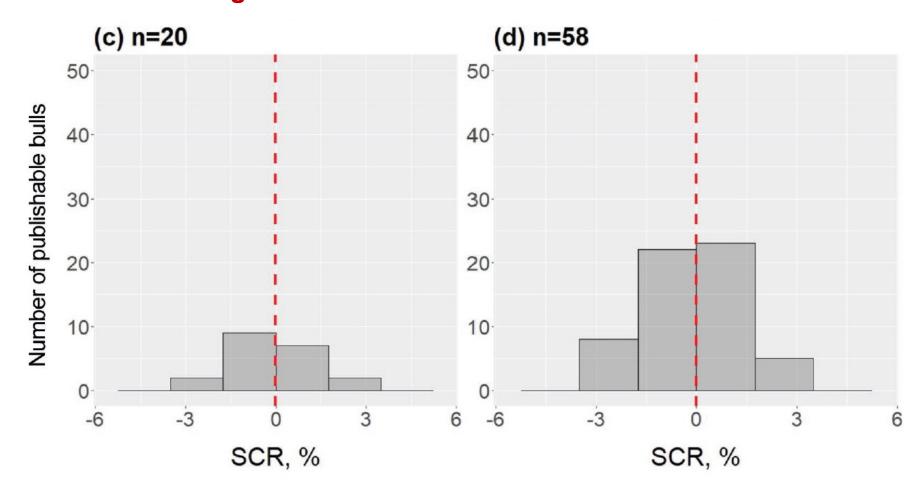
AVERAGE 305-actual MILK (2021)

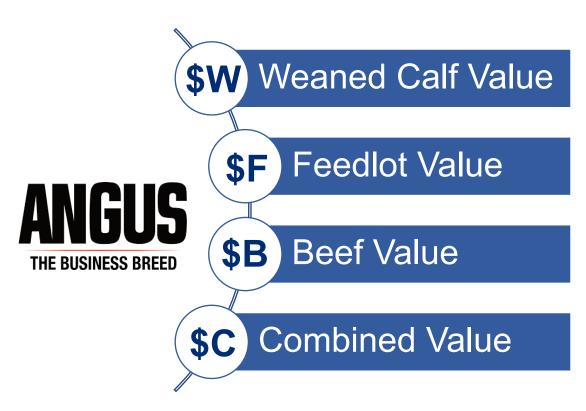
	AY	BS	GU	НО	JE
[same dairy breed]	21,378	22,519	20,995	24,015	20,530
Angus	23,920	22,994	22,319	24,284	22,018
XB	24,277	22,470	20,954	24,840	20,985
Limousin	20,985	23,160	25,455	24,771	22,358
Simmental	20,503	21,998	19,899	25,020	19,147
Charolais	21,242	21,704	23,603	23,323	21,165
Wagyu	18,462	24,676	25,393	25,632	22,150

HOW ARE BEEF SERVICE SIRES CHOSEN?

BEEF X DAIRY CONCEPTION RATE

Holstein Bulls




BEEF X DAIRY CONCEPTION RATE

Holstein Bulls

Beef indexes have not yet been tested with beef x dairy crosses

Key Messages

- Dairy producers need tools to select the best beef bulls for crossbreeding
- Beef economic indexes are built around assumptions related to beef breeds only
- Many producers are choosing cheap semen that will yield a black calf; this does not guarantee CAB premiums or address adverse effects on dairy dam

THANK YOU

Data were available to the authors from CDCB under USDA Agricultural Research Service Material Transfer Research Agreement #58-8042-8-007. While CDCB offers data stewardship, sole ownership and rights pertaining thereto remain with the producer and we thank U.S. dairy producers for sharing their data for research use.

This work was supported by USDA-ARS project 8042-31000-113-000D, "Improving Dairy Animals by Increasing Accuracy of Genomic Prediction, Evaluating New Traits, and Redefining Selection Goals".

The USDA does not guarantee, approve, or endorse any product or company; the mention of specific names may be required for accurate research reporting. USDA is an Equal Opportunity Employer.