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Abstract

A Single Big Leaf (SBL) forest transpiration model was calibrated on half-hourly eddy correlation measurements. The SBL.
model is based on the Penman—Monteith equation with a canopy conductance controlled by environmental variables. The
model has eight calibration parameters, which determine the shape of the response functions. After calibration, residuals
between measurements and model results exhibit complex patterns and contain random and systematic errors. Artificial Neural
Networks (ANNs) were used to analyse these residuals for any systematic relations with environmental variables that may
improve the SBL model. Different sub-sets of data were used to calibrate and validate the ANNs. Both wind direction and wind
speed turned out to improve the model results. ANNs were able to find the source area of the fluxes of the Douglas fir stand
within a larger heterogeneous forest without using a priori knowledge of the forest structure. With ANNs, improvements were
also found in the shape and parameterisation of the response functions. Systematic errors in the original SBL model, caused by
interdependencies between environmental variables, were not found anymore with the new parameterisation. After the ANNs
analyses, about 80% of the residuals can be attributed to random errors of eddy correlation measurements. It is finally concluded
that ANNSs are able to find systematic trends even in very noisy residuals if applied properly. © 2001 Elsevier Science B.V. All
rights reserved.
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1. Introduction tion at local, regional, and global scale (Raupach and

Finnigan, 1988). In such models it is common to

Transpiration of water by vegetation is an impor-
tant component of the energy exchange at the earth
surface. Single-layer, multi-layer and 3-dimensional
models exist, simulating transpiration of the vegeta-
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describe the vegetation as if it were a Single Big
Leaf (SBL) (for example SiB by Sellers et al. (1986)
and BATS by Dickinson et al. (1986)). The transpira-
tion was experimentally measured and mathemati-
cally estimated by the Penman—Monteith equation
(Monteith, 1965), from the cooling effect of the forest
resulting from latent heat of evaporation of the tran-
spired water. In a hydrological context, the most
important characteristic of the SBL is its stomatal
resistance to transpiration. This resistance is
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controlled by a number of environmental conditions,
which can be incorporated in the SBL model with
physically based or empirical response functions
(Stewart, 1988). By optimising the parameters in the
response functions, the SBL model can be made to fit
observations of latent heat fluxes above vegetation
(Dekker et al., 2000; Huntingford, 1995). However,
residuals between measurements and model results
still remain after calibration. These residuals are
caused by random and systematic measurement errors
and model inaccuracies, and may contain information
that can be used to improve the SBL model.

Artificial Neural Networks (ANNs) can be used to
analyse whether any patterns occur in the residuals
between measured and modelled transpiration.
ANNGs are a very suitable tool for this purpose because
they are able to find relations in complex non-linear
systems, without an a priori model concept (Hecht-
Nielsen, 1991; Wijk and Bouten, 1999).

Recently, Huntingford and Cox (1997) used
ANNS to detect how stomatal conductance responds
to changes in the local environment and compared
it with the Stewart stomatal conductance model.
They concluded that the Stewart-Jarvis and ANN
stomatal conductance model both perform well,
although the models explain different parts of the
variances. In the present study we want to test a
method which is less sensitive for the chosen data
set by using different sub-sets of data to calibrate
and validate the ANNs. Therefore we use a data set
of a Douglas fir stand in the Netherlands which
was already used to model forest transpiration
with a SBL model by Bosveld and Bouten (1992)
and Dekker et al. (2000). We explore patterns in
the residuals between observed time series of tran-
spiration and those modelled by a calibrated SBL
model for the Douglas fir stand. With ANNs, we
distinguish between random errors on one hand and
systematic errors or model errors on the other hand.
Only systematic errors with an identifiable physical
basis are used to further improve the existing SBL
model. Model improvements may consist of incor-
poration of additional environmental variables that
were not considered in the original model or may
be an improved response to an environmental vari-
able. When all relevant information is incorporated
in the existing SBL model, we explore the mathe-
matical forms of the response functions.

2. Materials and methods
2.1. Research site

The research site is located in a 2.5 ha Douglas fir
stand, in a large forested area, in the central Nether-
lands near Garderen. The Douglas Fir forest is dense
with 780 trees ha™' without understorey and planted
in 1962. Average tree height in 1995 was 25 m, lowest
living whorl 13 m, mean diameter at breast height is
0.25 m and the single sided leaf area, including stem
area, ranging from 9.0 m? m 2 to 12.0m” m ? in
summer (Jans et al., 1994). The forested area has
different stands with dimensions of a few hectares.
Most dominant species are Douglas fir, Beech, Scots
Pine and Japanese Larch. The soil is a well-drained
Typic Dystrochrept (Soil Survey Staff, USDA, 1975),
with a forest floor of 5cm on heterogeneous ice-
pushed sandy loam and loamy sand textured river
deposits. The water table is at a depth of 40 m
throughout the year. The 30-year average rainfall is
834 mm y ' and is evenly distributed over the year,
mean potential evapotranspiration is about 712 mm
y~!. Yearly transpiration reduction by water stress is
low (about 5%), although short periods with consider-
able drought stress do occur (Tiktak and Bouten,
1994).

2.2. Models

Forest transpiration was modelled with the Single
Big Leaf model (SBL) based on the Penman-
Monteith equation (Monteith, 1965):

sR, + pC,Dg,

AE =
s+ A1+ galgs)

)

where AE is the latent heat flux (W m—z), s the slope
of the saturated water vapour curve (mbar K—l), R,
the net radiation (W m—?), p the density of air (kg
m-"), C, the specific heat capacity of air (J kg—'
K-", D the vapour pressure deficit (mbar), y the
psychrometer constant (mbar K '), and g, and g, are
the aerodynamic and surface conductance (m sh,
respectively.

Aerodynamic conductance (g,) is calculated with
(Monteith and Unsworth, 1990):

8a = Wl lu 2)
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Fig. 1. Response functions to growth or leaf area index f (DOY), vapour pressure deficit fp(D), global radiation fr,(Ry), temperature f(T) and
soil water content fy(6). Lines are calibrated values. Temperature response f(r) was not found and ar was fixed to zero.

where u- is the friction velocity derived from the wind
profile equation under neutral conditions and u is the
wind speed (m/s). Friction velocity is calculated with
(Monteith and Unsworth, 1990):

ku
ln( z—d )
20
where k is the von Karmann constant, z the measure-
ment height (36 m), d the zero plane height taken as
two thirds of the tree height (17 m), and z, is the
roughness length (m). For the 1989 data set, Bosveld
(1997) found z, values ranging between 1.7 and 3.6 m.
Due to this large range and because the trees have
grown between 1989 and 1995, z, was used as fit-
parameter.

Surface conductance, g, is composed of the stoma-
tal conductance (g.) and the remaining conductance

3

U, =

when stomata are closed (go):
8 =8 T & “4)

8o 1s related to culticular transport of water vapour.

For the 1989 data set, Bosveld and Bouten (1992)
modelled stomatal conductance as a product of
response functions of environmental variables. They
found that g, depends on leaf area index (L), vapour
pressure deficit (D), global radiation (R,), air tempera-
ture (7') and volumetric soil water content (0):

8e = 8eret fLIDOY) (D) frg, (Ry) fr(T):fo(6) (&)

where the g. .r 1S a parameter, representing the canopy
conductance at reference conditions f; are reduction
functions of the environmental conditions or time
and DOY is Day Number of the Year. The functional
shapes of the response functions, used by Bosveld and
Bouten (1992), are plotted in Fig. 1.
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A piece-wise linear form for the growth curve (f;)
was assumed. It was observed (Tiktak et al., 1991)
that shoot growth starts at DOY 130 and ends at
DOY 180, meaning that DOY is a surrogate for
Leaf Area Index:

£.(DOY) = 1 — a, (DOY + 185)/315

0 =DOY = 130

£.(DOY) = 1 — a, (180 — DOY)/50

130 = DOY = 180

£.(DOY) = 1 — a,(DOY — 180)/315

(6)
180 = DOY = 365
where q; is the free parameter to be optimised.
The response function for D (fp) is:
1
D)= ——— 7
hD = 155, (M)

where ap (mbar ") is the free parameter and D, (mbar)
a reference D, here chosen at 4.6 mbar at which fp
becomes 1. For D < 1.5 mbar the response function
was set to fp(D = 1.5 mbar).

The light response function (fg,) is described with:

R,(1000 — ag,)
Ry(1000 — 2ag,) + ag, 1000

Jrg(Rg) = (3)
where ag, (W m 2) is the free parameter and 1000 is
the maximum radiation (W m_z).

For the temperature response (fr), Jarvis (1976)
used a function that is forced to zero at T=0 and
T = 40°C while the optimum temperature (Tgpy) is a
free parameter. A disadvantage is that the function can
not set to ‘no response’ and therefore Bosveld and
Bouten (1992) used:

@M =1-ar
40 — T N\2-Torr20/ T \Topr/20
ralg o) (7)
40 — Topr Topr
0°=T = 40°

©))

where ar is the free parameter and Tqpr is set to 25°C.
The soil water content (fy) is described with:

f®=1 0=0.072

Jr(0) =1 —a4(0.072 — 6) 6<0.072 (10)

where ay is the free parameter and 0.072 represents
the so called reduction point, e.g. the starting level at
which soil water stress occurs. This reduction point
was found with the soil water model SWIF (Tiktak
and Bouten, 1992,1994).

In summary, the SBL model has eight parameters.
One parameter, z, is used to calculate g,, g, accounts
for canopy conductance when the stomata are closed,
8e.ret 18 used to scale the five response functions, which
together contain five parameters.

2.3. Measurements and data processing

Transpiration was calculated from measured half-
hourly latent heat fluxes minus the forest floor
evaporation. Only periods with a dry canopy were
selected to avoid evaporation fluxes of intercepted
rain. In total, 4048 half-hourly measurements
remained in 1995. The latent heat flux was measured
at 30 m above the forest floor with a fast response Ly-
a hygrometer and a sonic anemometer-thermometer
system (Bosveld et al., 1998). With half hourly
measurements, the random error amounts to 15% of
the flux (Bosveld and Bouten, 1992) with an addi-
tional offset of 5 W m 2. The forest floor evaporation
was simulated with the model of Schaap and Bouten
(1997), who used a Penman—Monteith approach
where surface resistance depends on the water content
of the forest floor. For the same forest they measured
and modelled a maximum forest floor evaporation of
25Wm™>

Half-hourly values of meteorological driving vari-
ables were measured by the Royal Meteorological
Institute of the Netherlands (KNMI) on a 36 m high
guyed mast. Short wave incoming radiation was
measured with a CM11 Kipp solarimeter. Ambient
temperature and humidity were measured with venti-
lated and shielded dry bulb and wet bulb sensors at
18 m above the forest floor. Wind speed was
measured with a three-cup anemometer at 36 m
above the forest floor. The soil water model SWIF,
calibrated on soil water content measurements of the
same forest, was used to simulate daily water contents
of the forest floor and mineral soil. To obtain
representative water contents of the root zone, the
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Table 1
Minimum, maximum and mean values of the measured environ-
mental variables

Minimum Maximum Mean
DOY 101 293 190
R, (Wm™ 0 953 223
R, (Wm™? —80 710 135
D (mbar) 0 322 6.1
T (°C) 0.3 31.2 16.7
u(msh) 0.4 6.9 2.9
AE (W m™?) -29 370 59
6 (m*m™?) 0.053 0.118 0.083
SoilEvap (W m™?) 0 23 5.6

simulated vertical water content profile was weighted
with the root density. Range and mean values of
measured environmental variables are shown in Table 1.

2.4. Analysis with artificial neural networks

The type of Artificial Neural Networks (ANNs)
applied is a feed-forward back propagation (Haykin,
1994; Hecht-Nielsen, 1991) with three layers, an
input, a hidden and an output layer. The number of
input and output nodes corresponds to the number of
input and output variables, while the number of
hidden nodes depends on the complexity of the rela-
tions between input and output variables. At each
neuron, the input values are biased and weighed by
model parameters. A sigmoid transfer function for the
hidden layer and a linear transfer function for the
output layer provide the non-linear capabilities of
the ANN. A properly calibrated neural network is
able to approximate any continuous (non-linear) func-
tion (Haykin, 1994; Hecht-Nielsen, 1991), therefore
neural networks are well-suited to explore the resi-
duals between model predictions and observations.
The neural network parameters were optimised with
the Levenberg—Marquardt algorithm (Marquardt,
1963; Demuth and Beale, 1994) which minimises
the root mean squared errors (RMSE) between
measurements and model results.

When calibrating ANNs one has to cope with the
flexible structure, local minima, overtraining and the
high sensitivity to sets of calibration and test data
(Morshed and Kaluarachchi, 1998). Problems with
local minima were solved by initialising the model
20 times with different initial parameter values. Sensi-

tivity analyses proved that 20 initialisations was
enough. Problems with overtraining and high
sensitivity to outliers were solved by using different
sub-sets of data. The total data set was divided in
independent sets for calibration and validation. The
calibration data sets were randomly drawn and
contain 67% of the total data set. An ANN was
calibrated on a calibration set and tested on the
corresponding validation data set. In total 30 calibra-
tions-validations were carried out. The best run of the
20 initialisations was selected. Mean and standard
deviation were calculated from these best runs of
the 30 sets.

2.5. Approach and presentation of results

This study followed two main steps. In the first step
the residuals of the whole SBL model were examined
with ANNS. First the parameters of the SBL model
were calibrated on the eddy correlation data using the
Simplex algorithm (Press et al., 1988). Due to colli-
nearity between the parameters, as found by Dekker et
al. (2001), we used different initialisations to find the
best fit. Subsequently, the residuals between the
predicted and measured transpiration fluxes were
analysed with ANNs to investigate if there are
systematic deviations, which were correlated with
the environmental variables. The ANN analyses of
the residuals were carried out using wind direction
(WD), u, Ry, R,, D, T, DOY and 6 as input. Results
of this first step are presented in Section 3.1.

In the second step, the goal was to establish
improved response functions of the g. function (Eq.
(5)) to predict optimal g. by using only information of
the transpiration measurements. The disadvantage of
using response-functions, as defined in Eqgs. (6)—(10),
is that some parts of these functions are pre-set. On the
contrary, ANNs do not use a-priori functions and find
the best fit only based on the data and not based on
these pre-set functions. To establish these optimal
response functions, the g.-function is first degraded
by putting all the original reduction functions in Eq.
(5) to 1.0 and g, to 0.0. Because no reduction func-
tions are present in this version of the SBL model, the
residuals between model outcome (y;) and observa-
tions are large and are very likely correlated with one
or more environmental variables. To this end we use
an iterative approach based on ANN analyses of the



202 S.C. Dekker et al. / Journal of Hydrology 246 (2001) 197-208

Table 2
Root Mean Squared Error (RMSE) and optimised free parameters of
the canopy conductance model with different wind sectors

Wind sector 0-360 15-125
RMSE (W m?) 26.41 21.85
Gerer (mm s~ 18.12 13.8
go (mm s~ ) 0.50 0.55
ar 0.385 0.320
ap (mbar ") 0.172 0.129
dgg (W m™?%) 260 283

ar 0 0

ag 224 30.0

residuals between the SBL model and the observed
transpiration. In the first iteration, only the g .r para-
meter of the SBL model is recalibrated on the data-set
while all reduction functions were set to ‘no
response’. Five ANN analyses are carried out to
establish the response of the residuals to variations
of R,, D, T, DOY and 6. The strongest response is
selected and added to the predicted transpiration by
the SBL model (y,) and the predicted offset is
transposed to gy. Subsequently, g, can be found by
inverting the Penman—Monteith equation with y, as
transpiration flux. To obtain the functional shape of
the new response, this g(y;) is divided by the gy(y,).
After describing the response function in appropriate
mathematical terms, it is incorporated in the SBL
model of the first iteration. The SBL model is subse-
quently recalibrated for g. ., go and the parameter of
the response function and once again the residuals are

Table 3

Root Mean Squared Error (RMSE) of the SBL model with different
wind sectors, and improvements of fits by ANN in % of the original
RMSE. ANN_ u means that an ANN analyses with wind speed (1)
as input gives an improvement with respect to the original SBL
model

Wind sectors (°) 0-360 15-125
RMSE SBL (W m~?) 26.41 21.85
ANN_ u (%) 0.8 0.5
ANN__ WD (%) 1.8 0.2
ANN 6 (%) 1.1 1.2
ANN_ D (%) 0.3 1.0
ANN_ R, (%) 0.3 0.4
ANN_ R, (%) 0.3 0.4
ANN T (%) 0.3 0.2
ANN__DOY (%) 0.2 0.1

analysed with ANN after which a response function is
established. This iterative improvement is carried out
until no meaningful improvement of the SBL model is
obtained. Results of this second step are shown in
Section 3.2.

3. Results and discussion
3.1. Systematic deviations of the residuals

Eight parameters of the SBL model were calibrated
to fit the measurements (first column of Table 2). This
calibration shows that no temperature response could
be identified and therefore ar was fixed to zero.
Bosveld and Bouten (1992) found also no temperature
response for the 1989 data set. If using a similar type
of temperature function and not the function of Jarvis
(1976) that can not be set to ‘no response’, maybe ‘no
temperature response’ could also be identified for
other forests. The shapes of the four remaining
response functions are plotted in Fig. 1.

Improvements in model fit of the eight ANN
analyses are shown in Table 3 as percentages of the
original model fit. The ANNs with WD as input
showed the strongest improvement. This response
together with the u response is further evaluated.
Fig. 2(a) and (b) shows residuals against u and WD.
In these figures, a positive residual means that the
SBL model underestimates the measurements. A
clear systematic trend is not visible because of large
random errors. Fig. 2(c) and (d) shows the trend found
by the ANNSs. Dashed lines are the standard devia-
tions, calculated from the best 30 ANNS, representing
the reliability of the trend. Responses that vary with
wind speed and direction reflect the variations in
forest structure and species. Bosveld (1997) deter-
mined different roughness lengths from wind profile
relations for every 30° wind sector for the 1989 data
set. He found deviant values in the sectors 210—330°,
which he attributed to other tree species. However,
another roughness length does not lead to other tran-
spiration values because the mean g, is 70 times
smaller than g,. Therefore we must focus on a source
area of only one species. Fig. 2(d) shows a constant
residual in the wind sector 15-185° and tends to
confirm a homogeneous forest structure in that
direction. With the data of this sector only, the ANN
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estimates the measurements.

analysis was repeated again with u and WD as input at
the same time. Still an improvement of 1.6% was
found. The response found by the ANN (Fig. 3) corre-
sponds with the characteristics of the forest stand. The
sectors above 125° are dominated by Scots Pine. The
sector 50—125° has the largest fetch of the Douglas fir
although Fig. 3 shows that the conditions are not
constant against wind speed. In the SBL model, stabi-
lity corrections of the boundary layer were ignored
because g, has only a very small effect on transpira-
tion. However, during unstable conditions the source
area is much smaller because the cut off in the bound-
ary layer is much steeper. Unstable conditions mainly
appear with low u meaning that the fetch will be
smaller during these circumstances. Stable conditions
will mainly appear during night with low « leading to
a large fetch. Information of stable conditions can not
be identified because during night no transpiration and
therefore no information in the data is available.
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Bouten et al. (1992) found wetter soil conditions for
the wind sector 50—125° at about 150 m distance from
the meteorological tower. The fetch will be that large
during neutral conditions. Neutral conditions mainly
appear during high u. The underestimation by the
model between 50 and 125° and high u (Fig. 3) can
possibly be caused by these wetter soil conditions. As
a result of this analysis, it is shown that variations in
forest structure can be derived from transpiration
observations.

To reduce the effect of forest structure heterogene-
ity and with a focus on the source area of Douglas fir
only we used data from the 15-125° wind sector for
further analyses resulting in a reduced data set of 1633
measurements. The SBL model was calibrated again
(Table 2, column 2) and the ANN analyses were
repeated (Table 3, column 2). Only a small improve-
ment in WD remained, indicating that the forest
structure is sufficiently homogeneous in the selected
wind sector. The remaining improvement in u is
caused by different lengths of the fetch caused by
unstable and neutral conditions of the atmosphere.

The ANN response to § and D, which show the
largest improvements, are plotted in Fig. 4. The soil
water trend in Fig. 4(a) shows that the model under-
estimates the transpiration at 6 between 0.067 and
0.088 m®> m >, overestimates at # < 0.067 m®> m~°
and predicts well at > 0.088 m® m . The model
underestimation can not be caused by a wrong initial
soil water stress point because in that case we should
expect an overestimation of the model between 0.072
and 0.088 m® m>. Therefore, this systematic error
must be caused by the interplay of environmental

variables that lead to the evolution of 0. This interplay
is caused by coupled environmental conditions, which
are available in these kind of monitoring data sets, as
pointed out by Huntingford and Cox (1997); Dekker
et al. (2000). The relation of the SBL model residuals
and D shows a shift at 17 mbar (Fig. 5(b)). However,
ANNSs responses were not conclusive at higher water
vapour deficits as reflected by wide uncertainty
ranges. A further reduction of the data set was there-
fore not considered.

3.2. Optimisation of canopy conductance responses

To reduce effects as shown in Fig. 5(a) and (b)
caused by interplays between environmental variables
and being not dependent on pre-set forms of response
functions (Eqgs. (6)—(10)), ANNs were used to estab-
lish improved functions. In this step, improved
response functions were established with an iterative
approach to predict optimal g,. In the first iteration,
only the free parameter g . was recalibrated on the
reduced data set of Douglas fir (Table 4, first column)
while all response functions were set to 1.0. The Root
Mean Squared Error (RMSE) between modelled and
measured transpiration was large (41.2 W m 2). With
the ANN analyses it was shown that the R, response
caused the strongest reduction in the RMSE indicating
that it is the most important controlling factor in
stomatal behaviour. The residual fit found of this
ANN analyses is plotted in Fig. 5(a), dashed lines
are again the standard deviations, calculated from
the best 30 ANNs, representing the reliability of the
trend. Fig. 5(b) (left y-axis) shows the response



S.C. Dekker et al. / Journal of Hydrology 246 (2001) 197-208 205

40
1.0
a-
g 20
.
=
5 01 s &
2
9
=
-20
0.0
-40 T T T T T T
0 250 500 750 1000 0 250 500 750
2 K
Rg [Wm™] Rg [W m™]
4
C D
— 4 B
g
g 04
z &
E e
‘E-40 24
23
I~ HI
i
T
-804 a4
T T T 0 T T T
0 10 20 30 0 10 20 30
D [mbar] D |mbar]
20
E F l]
1.34
ﬁg HI ¥ ﬂ T 1.0
B o0 =R 11} H
z 1.04 i IH &
o D
E @
32
g 074 0.5
20 {
0.4 I
T T T 0.0
0.06 0.08 0.10
8 |m*mJ]
10 15 1.4
H
&
g 0 -
1.0 ‘:a
z Lo i &7 g
=]
2 s =
;:5 10
I Fo.6
( T T T O‘: T T T
100 150 200 250 100 150 200 250
DOY DOY

Fig. 5. (a) Shows the ANN fit to R, during iteration 1. Dashed lines are standard deviation values of the 30 best runs. (b) Shows the light
response of the bulk stomatal conductance model by inverting the Penman—Monteith equation with uncertainties (left y-axis). Solid line is the
functional shape used as response function (right y-axis). (¢) and (d) Function with D (Iteration 2); (e) and (f) function with 6 (Iteration 3); and
(g) and (h) function with DOY (Iteration 4). Dots in (e) and (g) are daily mean values containing minimal five half-hourly measurements during
daytime.



206 S.C. Dekker et al. / Journal of Hydrology 246 (2001) 197-208

function of the conductance, which is calculated for
30 classes of R,. The R, response function shows a
linear trend between 0 and 600 W m~* with a slightly
decreasing response at values above 600 W m ™2 This
decreasing response is caused by the interference of
D. A high D, which is correlated to a high R,, causes a
lower response. As this response is not used yet we
neglected the decrease in the R, response. As R,
response, we used a piece-wise linear function, with
a maximum at R, = 600 W m > (AR max)- Minimum
R, response was found at 0.5. To conform to
commonly used response functions we rescaled the
light response between zero and one (right axis in
Fig. 5(b)) while the remaining conductance during
night-time is optimised with g,. Jarvis (1976); Stewart
(1988) both used a non-linear light response curve as
shown in Fig. 1(c), which was suggested by plant
physiological studies carried out under controlled
conditions. Our analysis, however, does not support
a non-linear light response curve for this forest.

In the second iteration, the SBL model was opti-
mised with g s, g0 and age max. Results of calibration
and the ANN analyses are shown in Table 4. Strongest
residual fit was found with D (Fig. 5(c)). The high
uncertainties at D > 25 mbar were caused by the
limited number of measurement points (29). The
response function (Fig. 5(d)) shows a similar shape
as the original one (Fig. 1(b)). The high uncertainty in
the first constant part is caused by low transpiration

Table 4

fluxes. The uncertainty at high D seems small, 0.04
(Fig. 5(d), right axis), but the fluxes are high, resulting
in a high uncertainty as shown in Fig. 5(c).

In the third iteration, the SBL model was optimised
with gc ref, 80, drgmax and ap. Results of calibration and
ANN analyses are shown in Table 4. Strongest
response was found with 0 (Fig. 5(e) and (f)). Because
0 is constant during the day, only daily average values
were plotted in Fig. 5(f). Although there is some scat-
ter in the conductance plot, the soil water stress
response curve is almost identical to the original one
and the reduction point was also found at 0.072 m*
m . Moreover, an irrational shape as shown in Fig.
4(a) was not found anymore.

In the fourth iteration, the model was optimised
with gcrer, 80» Grgmax» ap and ay (results shown in
Table 4). Strongest ANN response was found with
DOY (Fig. 5(g) and (h)). From these growth curves,
we assume that shoot growth starts at DOY 130 and
ends around DOY 200. A linear decrease after DOY
200 as shown in Fig. 1(d) was not found. A systematic
trend before DOY 130 could not be found due to a
lack of data. Therefore constant values are assumed
before DOY 130 and after DOY 200, while the steep-
ness of the change between DOY 130 and 200 was
used as free parameter.

In the last iteration, the model was optimised with
8eret> 805 ARgmax» @n» dg and ag, (Table 3, column 5). No
clear improvements could be found by including 7 in

Results of ANN analyses of five iterations. For each iteration, the calibrated parameter values and the Root Mean Squared Errors (RMSE) of the
SBL model between modelled and measured transpiration is given. Five ANN analyses are carried out to establish the response of the residuals
of this calibrated SBL model to variations of Ry, D, T, DOY and 6. RMSE errors of these ANN fits are shown in the last five lines. Bold value is
strongest response and new mathematical function of this variable is incorporated in the SBL model. Then the iteration is repeated by

recalibrating the parameters

Tteration 1

Iteration 2

Iteration 3 Iteration 4 Iteration 5

Zerer (mm s 1) 3.8 3.5
go (mm ) - 0.91
Argmax (W m ™) - 590
ap (mbar 1) - -

ag - -

ap, - -
RMSE__ SBL (W m™?) 41.2 34.6
RMSE R, (Wm™) 353 332
RMSE_D (Wm™) 40.5 30.2
RMSE 6 (Wm™) 40.0 32.6
RMSE__DOY (W m %) 41.0 334

RMSE_ T (W m™?) 41.1 32.3

132 13.4 16.7
0.66 0.67 0.68
578 595 592
0.181 0.159 0.191
- 0.360 0.358
- - 0.353
254 23.0 20.8
25.3 229 20.7
252 22.8 20.7
24.1 22.8 20.7
253 22.5 20.7
25.4 22.9 20.7
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the canopy conductance model which was also found
in the first calibration of the original SBL. model
(Table 3).

In comparison with the first analyses, presented in
Section 3.1, the irrational shape part of the 6 curve
(Fig. 4(a)) and the shift at 17 mbar of the D curve (Fig.
4(b)) from the first analysis were not found anymore.
This justifies the conclusion that both systematic
errors were caused by interdependencies among
environmental variables meaning that the iterative
approach, presented in this study, leads to a set of
stomatal conductance response functions without
these interdependencies. Moreover, pre-set forms of
response functions, also for instance the temperature
function of Jarvis (1976), can cause interplays to other
variables causing apparent sensitivities.

The improvement in model fit, from 26.41 to 21.85
due to the reduction of the forest structure heteroge-
neity and from 21.85 to 20.82 W m %, due to the new
parameterisation may seem small. However the
random error of half-hourly eddy correlation measure-
ment was estimated at a RMSE of 16.7 W m ™ by
Bosveld and Bouten (1992), 80% of the total error.
As a result only an error of 4.1 W m ™2 remains to be
explained.

This remaining error can be caused by measure-
ment errors of the environmental conditions, model
errors of soil evaporation and soil water or by the
wetter soil conditions at larger distance, as shown in
Fig. 3.

Improvements of the SBL model with this data set
are not foreseen. As pointed out before, high uncer-
tainties in the ANN response was found at high D
(Fig. 5(c)) and in the ANN response before DOY
130 (Fig. 5(g)). Both uncertainties were caused by a
lack of data, meaning that these functions can be
better estimated with more measurements during
these specific conditions.

4. Conclusions

Artificial Neural Networks (ANN) show trends in
residuals between results of a forest transpiration
model (SBL) and eddy correlation measurements
that were related to both wind speed and wind direc-
tion. They were able to localise the source area of
the fluxes of the Douglas fir stand within a larger

heterogeneous forest without using a priori know-
ledge of the forest structure. After restricting the
data set to wind sections with homogeneous forest,
the response functions of the canopy conductance
model were also analysed with ANNS in an iterative
approach. The analysis led to a piece-wise linear
light response curve with saturation at 600 W m >
while only small changes for the other functions
were found. Systematic errors in the original
model were caused by interdependencies between
environmental variables. These errors were not
found anymore with the new parameterisations,
and new functional forms of the response functions.
The method presented here, that used different sub-
sets of data to calibrate and validate the ANNS, is
able to trace systematic trends even in very noisy
residuals.
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