Using Propionic Acid to Preserve More Hay

Wayne K. Coblentz, USDA-ARS
US Dairy Forage Research Center
Marshfield, WI
Riley, KS – 1991
100°F, 20 mph winds

Unfortunately, harvests of alfalfa or other hays are frequently complicated by poor drying conditions, or unexpected rainfall events.
Therefore, hay producers often must choose between subjecting their valuable hay crops to rain damage, or accepting inadequate desiccation and spontaneous heating.
Spontaneous Heating

• result of plant and microbial respiration
• occurs in consistent patterns across forages
• many contributing factors
 – moisture
 – bale density and/or size
 – environmental factors
 – storage site
 – preservatives
• very good predictor of changes in forage quality!
 (changes are almost entirely negative)
Patterns of Spontaneous Heating in Alfalfa Hay (45-kg bales)

Coblentz et al. (1996)

Plant-associated respiration

Microbial respiration

Storage Time (Days)

Temperature (°F)

- Red line: 30%
- Green line: 20%
Heating Degree Days vs. Initial Bale Moisture
Alfalfa Hay (Small Rectangular Bales) - 1991

\[Y = 56 \times - 891 \]
\[r^2 = 0.902 \]

Coblentz et al. (1994)
Wisconsin Round-Bale Studies

- alfalfa-orchardgrass hays from 3 harvests
- 3 bales/interactive treatment (3, 4, or 5-ft diameter)
- storage was outdoors on wooden pallets
- bales were monitored daily until internal bale temperatures indicated no further spontaneous heating
- bales were sampled rigorously on a pre- and post-storage basis
Maximum Internal Bale Temperature (Coblentz and Hoffman, 2009)

- **4-ft bales**
 - \[Y = 1.5x + 91.5 \]
 - \[r^2 = 0.943 \]

- **3-ft bales**
 - \[Y = 1.6x + 86.2 \]
 - \[r^2 = 0.955 \]

- **5-ft bales**
 - \[Y = 1.9x + 87.1 \]
 - \[r^2 = 0.971 \]
Cost and availability of labor has forced the dairy and hay industries towards larger hay packages, and these bales are far more likely to exhibit spontaneous heating.

\[Y = 34.3x - 339 \quad r^2 = 0.880 \]

\[Y = 48.4x - 425 \quad r^2 = 0.895 \]

\[Y = 2.89x^2 - 65.5x + 680 \quad R^2 = 0.966 \]

Coblentz and Hoffman (2009)
Wisconsin Round Bale Study (2006-07)

NDF

N = 32 baling treatments

Initial = 46.5%, which corresponds generally to \(\Delta \text{NDF} = 0 \) on the y-axis

Acid-Detergent Lignin

N = 32 baling treatments

Initial = 5.54%, which corresponds generally to \(\Delta \text{LIG} = 0 \) on the y-axis
Heat Damaged Protein (ADICP)

Figure 7.12. The relationship between the hemicellulose content of orchardgrass and the extent of the Maillard reaction. Hemicellulose declines as it is used in the heat damage reaction (Goering et al, 1973). Damaged carbohydrates no longer analyze as such and appear in the lignin fraction.

Van Soest, 1982
Wisconsin Round Bale Study (2006-07)

Hemicellulose

N = 32 baling treatments

Initial = 15.1%, which corresponds generally to ΔHEMI = 0 on the y-axis

Intersection of regression lines occurred at 347 HDD > 30°C

Acid Detergent Insoluble Crude Protein (ADICP)

N = 32 baling treatments

Initial = 6.3% of CP and 15.1% of DM, which correspond generally to ΔADICP = 0 and ΔHemicellulose (gray line) = 0, respectively, on the y-axis
TDN

N = 32 baling treatments

Initial = 57.9%, which corresponds generally to $\Delta \text{TDN} = 0$ on the y-axis
Use of Propionic Acid-Based Preservatives
Summary of 10 Experiments
Rotz et al. (1991)

- each experiment contained:
 - positive (dry) hay control (10 to 20%)
 - treated hays (20 to 37%)
 - untreated hays (19 to 40%)
 - small rectangular bales
- application rates ranged from 1.0 to 2.3% of bale weight (50% dilution)
- some experiments contained more than one treated vs. untreated comparison

Conclusions

- results were inconsistent across studies
- spontaneous heating was reduced, but not eliminated within treated hays
- regardless of treatment, HDD > 86°F were positively related to initial bale moisture
- losses of DM were positively related to HDD > 86°F accumulated during the first 30 to 45 days of storage
Applying Propionic Acid Preservative1 to Large Square Bales2 of Alfalfa-Orchardgrass Hay (Coblentz et al., 2013)

<table>
<thead>
<tr>
<th>Group</th>
<th>Moisture</th>
<th>Volume</th>
<th>Wet Weight</th>
<th>Dry Weight</th>
<th>DM Density</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%</td>
<td>ft3</td>
<td>lbs</td>
<td>lbs</td>
<td>lbs DM/ft3</td>
</tr>
<tr>
<td>High</td>
<td>27.4</td>
<td>40.7</td>
<td>644</td>
<td>467</td>
<td>11.5</td>
</tr>
<tr>
<td>Medium</td>
<td>23.8</td>
<td>40.7</td>
<td>626</td>
<td>476</td>
<td>11.8</td>
</tr>
<tr>
<td>Low</td>
<td>19.6</td>
<td>42.1</td>
<td>613</td>
<td>494</td>
<td>11.7</td>
</tr>
<tr>
<td>SEM</td>
<td>0.80</td>
<td>0.39</td>
<td>9.3</td>
<td>10.4</td>
<td>0.20</td>
</tr>
</tbody>
</table>

1 Rates: 0, 0.6, or 1.0% of fresh weight.

2 Large square bales were 3 x 3 x 6 ft.
Heating Degree Days > 86°F

Coblentz et al. (2013)

Moisture, %

Treated vs. Control, $P < 0.01$
1.0 vs. 0.6% Rate, $P < 0.01$

- High (27.4%)
- Medium (23.8%)
- Low (19.6%)

Treated vs. Control, $P < 0.01$
1.0 vs. 0.6% Rate, $P = 0.99$

Treated vs. Control, $P < 0.01$
1.0 vs. 0.6% Rate, $P = 0.81$

Coblentz et al. (2013)
NDF

Contrasts

<table>
<thead>
<tr>
<th></th>
<th>$P > F$</th>
</tr>
</thead>
<tbody>
<tr>
<td>HM: Acid-Treated vs. Control</td>
<td>< 0.01</td>
</tr>
<tr>
<td>HM: 1.0 vs. 0.6% Rate</td>
<td>0.14</td>
</tr>
<tr>
<td>MM: Acid-Treated vs. Control</td>
<td>< 0.01</td>
</tr>
<tr>
<td>MM: 1.0 vs. 0.6% Rate</td>
<td>0.46</td>
</tr>
<tr>
<td>LM: Acid-Treated vs. Control</td>
<td>0.29</td>
</tr>
<tr>
<td>LM: 1.0 vs. 0.6% Rate</td>
<td>0.50</td>
</tr>
</tbody>
</table>

N = 9 baling treatments
Prestorage NDF = 53.7%, which corresponds generally to ΔNDF = 0 on the y-axis

Coblentz et al. (2013)
N = 9 baling treatments

Prestorage ADICP = 1.70%, which corresponds generally to \(\Delta \text{ADICP} = 0 \) on the y-axis

\begin{table}
\centering
\begin{tabular}{|l|c|}
\hline
Contrasts & \(P > F \) \\
\hline
HM: Acid-Treated vs. Control & 0.16 \\
HM: 1.0 vs. 0.6% Rate & 0.13 \\
MM: Acid-Treated vs. Control & 0.01 \\
MM: 1.0 vs. 0.6% Rate & 0.39 \\
LM: Acid-Treated vs. Control & 0.72 \\
LM: 1.0 vs. 0.6% Rate & 0.70 \\
\hline
\end{tabular}
\end{table}

\textit{Coblentz et al. (2013)}
Energy (TDN)

Contrasts

<table>
<thead>
<tr>
<th></th>
<th>P > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>HM: Acid-Treated vs. Control</td>
<td>0.01</td>
</tr>
<tr>
<td>HM: 1.0 vs. 0.6% Rate</td>
<td>0.37</td>
</tr>
<tr>
<td>MM: Acid-Treated vs. Control</td>
<td>< 0.01</td>
</tr>
<tr>
<td>MM: 1.0 vs. 0.6% Rate</td>
<td>0.35</td>
</tr>
<tr>
<td>LM: Acid-Treated vs. Control</td>
<td>0.27</td>
</tr>
<tr>
<td>LM: 1.0 vs. 0.6% Rate</td>
<td>0.38</td>
</tr>
</tbody>
</table>

N = 9 baling treatments

Prestorage TDN = 55.3%, which corresponds generally to
\(\Delta \text{TDN} = 0 \) on the y-axis

Coblentz et al. (2013)
In Vivo Digestibility in Growing Lambs

Coblentz et al. (2013)
Propionic Acid Preservative on Round Bales of Alfalfa Hay
Coblentz and Bertram (2012)
Propionic Acid on Round Bales of Alfalfa Hay

Heating Degree Days > 86°F vs. Initial Bale Moisture

Coblentz and Bertram (2012)
Control, $N = 42$ bales

- Acid-treated, $N = 38$ bales

Prestorage ADICP = 1.57%, which corresponds generally to $\Delta \text{ADICP} = 0$ on the y-axis

Control, $N = 42$ bales

- Acid-treated, $N = 38$ bales

Prestorage NDF = 38.4%, which corresponds generally to $\Delta \text{NDF} = 0$ on the y-axis

Coblentz and Bertram (2012)
○ Control, N = 42 bales
● Acid-treated, N = 38 bales

Prestorage TDN = 61.5%, which corresponds generally to \(\Delta \text{TDN} = 0 \) on the y-axis

Coblentz and Bertram (2012)
Summary

• Propionic acid-based preservatives will not eliminate spontaneous heating, and effectiveness will decline as bale moisture increases.

• Effectiveness will be greatest when moisture concentrations are < 25%; however, *it should not be assumed that these products will be as effective within large stacks of bales.*
Summary

• Based on our work, propionic acid-based preservatives are more likely to be effective within rectangular bales in which the preservative is applied in the bale chamber.

• Keep a written log of baling conditions, initial bale moisture, acid-application rates, and stacking/storage management in order to assess effectiveness of these products under routine production management.
Summary

• Hays baled in large hay packages have a much greater likelihood of heating spontaneously, and catching fire.
 • Be cautious!

Source: Oklahoma State University
Questions ?