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ABSTRACT Forsythe and Wasow (1960) discussed discretization 

T HE influence of finite difference grid size on soil 
water flow model accuracy was studied using two 

cases. One case was of steady, two-dimensional infiltra- 
tion using the successive overrelaxation (SOR) method 
of solving finite difference equations. The other was of 
transient, two-dimensional infiltration using the alter- 
nating direction implicit (ADI) method. We formulated 
finite difference expressions for both cases using central 
differencing techniques. In the transient case, a very 
small grid size in both time and space dimensions was 
necessary at the initiation of infiltration. Furthermore, 
the AD1 method for this nonlinear case was only condi- 
tionally stable-at least at the initiation of infiltration. 
As infiltration proceeded, however, both the time and 
space grid sizes could be made larger. Indicators of a 
grid size that was obviously too coarse were a fluctuating 
infiltration rate in the transient case and irregularly 
shaped equipotential lines in the steady-state case. 

Although the models were nonlinear, they both con- 
verged; i.e., successively smaller grid sizes yielded solu- 
tions that asymptotically approached a limit. For a given 
regular grid size, considerable computational saving could 
be effected without appreciable loss of accuracy by using 
an irregular grid in which the regular grid size was dup- 
licated in the part of the section exhibiting the greatest 
curvature of equipotential lines, while larger grid sizes 
could be used in other parts of the section. Smaller grid 
sizes were also needed in regions where hydraulic gradi- 
ent changed rapidly. 

Accuracy of estimation varied approximately with the 
inverse of grid size rather than with the square of the 
inverse, as is generally claimed for central differencing 
on a square grid. 

INTRODUCTION 

One method for investigating soil water movement is to 
approximate the partial differential equations for porous 
media flow with finite difference models (Hanks and 
Bowers, 1962; Reisenauer et al., 1963; Taylor and 
Luthin, 1963, 1969; Freeze, 1971; Amerman, 1976a, 
1976b). A measure of the degree of approximation is the 
discretization error, U-u, where U is the exact solution 
of the partial differential equation, and u is the exact 
solution of the finite difference equation (Smith, 1965). 
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error and gave some appraisal techniques. However, these 
techniques have certain weaknesses even when applied 
to the linear Dirichlet boundary problem (all boundary 
conditions given in terms of U) with smooth boundary 
data. Vitasek (1969) claimed that these methods yield 
inaccurate estimates of error. 

Eauations for unsaturated soil water movement are 
nonlinear. Furthermore, boundary conditions are usually 
of the mixed type (both Dirichlet- and Neumann-type, 
where the latter refers to boundary conditions given as 
the gradient of U normal to the boundary), and boundary 
data are usually not smooth (boundary geometry may be 
complex and may contain junctions between Dirichlet 
a n d - ~ e u m a n n  types). Considering the weaknesses and 
lack of accuracy claimed for the methods discussed by 
Forsythe and Wasow (1960), when applied to ideal situ- 
ations, we concluded that these methods would be of little 
value with finite difference models of soil water flow. 

A gross approximation to discretization error is af- 
forded by the order of accuracy to which a finite differ- 
ence equation represents a partial differential equation, 
where order of accuracy is expressed as a function of grid 
spacing (Ax and Ay). Vitasek (1969) gave a table of orders 
of accuracy for several finite difference formulations. 
From this table, we observed that order of accuracy 
and, therefore, discretization error, is dependent upon 
grid spacing, arrangement of nodes in the finite difference 
grid (square, rectangular, triangular, etc.) and the 
manner in which finite difference expressions are for- 
mulated (number and pattern of the nodes included in 
the expressions). Order of accuracy in a rectangular grid 
is influenced by. whether the grid is regular (Ax and Ay 
uniform throughout a given section) or irregular (Ax and 
Ay variable over the section). 

The lack of rigorous methods for evaluating discreti- 
zation error, especially for nonlinear applications, has 
apparently discouraged those who model porous media 
flow from considering model accuracy. 

Exceptions are Taylor and Luthin (1963) and Smith 
and Woolhiser (1971). Taylor and Luthin discussed the 
effect of grid spacing upon model accuracy for saturated 
flow, a condition for which the flow equations are linear. 
Boundary conditions were of mixed type, however, and 
the methods of Forsythe and Wasow (1960) could not be 
confidently applied. Instead, Taylor and Luthin (1963) 
used a simple, direct technique of running their model 
several times for the same prototype, but using a differ- 
ent grid spacing for each run. Then, they plotted certain 
model output parameters as a function of grid size. The 
resultant graphs provided a visual test of model sensi- 
tivity to grid size. Smith and Woolhiser (1971) used the 
same technique with the problem of transient infiltra- 
tion into unsaturated soil. 

The purpose of this paper is to discuss the sensitivity 
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to grid spacing of two finite difference models of porous 
media flow. Scale effects and the sensitivity of one model 
to uniformity of grid spacing were also investigated. Sensi- 
tivity testing methods were similar to those of Taylor 
and Luthin (1963). 

PARTIAL DIFFERENTIAL EQUATIONS 

Water moves through porous materials in response to 
gradients in hydraulic head and in accordance with the 
law of continuity. Due to the three-dimensional nature 
of the distribution of hydraulic head and of hydraulic 
soil properties, partial differential equations together 
with appropriate boundary and initial conditions are 
used to specify particular flow situations. However, three- 
dimensional analysis of porous media flow is generally 
not economically feasible. A two-dimensional version of 
Richards' equation for porous media flow was given by 
Childs (1969): 

O = volumetric water content 
t = time (T) 
H = h + z = hydraulic head (L) 
h = h(O) = soil water pressure head (L) 
z = elevation above a datum (L) 
K = K(h) = soil hydraulic conductivity (LT-I) 
x, y are distances along the horizontal and vertical axes, 

respectively, of the Cartesian coordinate system 
(L) . 

For computational convenience, we use the h-based 
form of Richards' equation, given for general orientation 
of the Cartesian coordinate axes: 

ah a ah a ah a K aK 
C - = -  (K- ) + -  (K-)+sins-+cosa- 

a t  ax ax au a~ ax ay 

where 
C = a O/ a h = specific water capacity (L-') 
a = angle of rotation of the coordinate axes. 
For steady flow, the left side of equation [2] is zero, 

and boundary conditions (but not initial conditions) 
completely specify a problem. 

Equation [2] is a highly nonlinear equation, but ex- 
perience and tests like those of Taylor and Luthin (1963) 
have shown that successive overrelaxation (SOR) and 
alternating direction implicit (ADI) finite difference 
models generally converge to a reasonable approximation 
to the solution when iteration is used to remove the 
nonlinearity. 

A steady-state model employed the SOR (Smith, 
1965; Forsythe and Wasow, 1960) technique to solve 
finite difference equations which simulated steady flow 
for either saturated or unsaturated conditions or for a 
combination of the two (water table condition). A finite 
difference transient model used the AD1 (Peaceman and 
Rachford, 1955) method of solution and simulated un- 
steady flow for unsaturated conditions. The SOR and 
AD1 models were similar because finite difference ex- 
pressions for both were formulated using central differ- 
encing on a square or rectangular grid. Thus, of the vari- 

FIG. 1 Sections and boundary conditions used in sensitivity tests. 

ables which influence accuracy, only grid spacing and 
uniformity of grid spacing were allowed to vary. 

TEST SECTIONS 

Two sections, with no particular physical significance, 
were used to test the sensitivity of the SOR model. These 
sections and their boundary conditions are shown in Fig. 
1. A section similar to Section I, but of slightly different 
proportions, was used in a sensitivity test of the AD1 
model. 

The datum from which the elevation z was measured 
was the bottom boundary (water table) in each case. 

The grid spacings used in testing Section I are given 
below in which the equality Ax, Ay = a, b, c means that 
both Ax and Ay take on the values a, b, c in different parts 
of the grid: 

A. Regular Grid 
1. A x = A y = l m  
2. Ax = Ay = 0.5 m 
3. Ax = Ay = 0.25 m 
4. Ax = Ay = 0.125 m 

B. Irregular Grid 
1. Ax, Ay = 0.125, 0.25, 0.5 m 
2. Ax, Ay = 0.0625,0.125,0.25m 

Grid spacings in Section 11 were: 
A. Regular Grid 

1 .  A x =  Ay= l c m  
2. Ax = Ay = 0.5 cm 

B. Irregular Grid 
1. Ax, Ay = 0.5, 1.0 cm 

For fully saturated flow in homogeneous, isotropic 
media, K has the same value in all parts of the cross 
section. Equation [2] reduces to the linear Laplace equa- 
tion, and the constant, K, is eliminated. Solutions to 
the Laplace equation are independent of scale, i.e., a 
solution may be obtained for a particular geometry and 
applied to any flow region of the same geometrical pro- 
portions, regardless of actual size. 

In unsaturated flow situations, however, K varies ap- 
proximately exponentially with water content and may 
exhibit large differences over a flow section. For this 
reason, one cannot model a large section with a geometric- 
ally similar smaller one without making scaling adjust- 
ments in the relationship between K and h. Because of 
the exponential relationship, this is a complicated task. 
The question naturally arises whether there is an advan- 
tage to modeling a large section with a geometrically simi- 
lar one for unsaturated flow. An advantage might be 
realized if modeling with a smaller section meant that 
fewer nodes were needed in the solution grid so that 
fewer computations would be necessary. 



FIG. 2 Example of estimation of pressure head 
for Ax = Ay = 0 [ho] for Section I, steady flow. 

Hydraulic conductivity as a function of water content 
varies widely between soils (Bouwer, 1964). For simulation 
of flow in Section I, values of K(h) and C(h) were calcu- 
lated from data given by Hanks and Bowers (1962) for 
Sarpy Loam soil. Amerman (1976a) gave K(h) for the 
Saybrook Silt Loam soil used in simulations involving 
Section 11. Saturated hydraulic conductivity for Saybrook 
S. L. was nearly two orders of magnitude higher than 
that for Sarpy L. and the latter decreased much more 
rapidly than the former as pressure head decreased, al- 
though the curves were very similar in shape. In each 
case, the simulation used the K(h) data in tabular form. 

Differences between Sections I and 11, then, include 
geometry, scaling, and the hydraulic conductivity-pressure 
head relationship. 

SENSITIVITY OF A STEADY-STATE SOR MODEL 

In earlier papers Amerman (1976a, 1976b) discussed 
a steady-state porous media flow model based on the 
SOR method of solving finite difference equations. The 
uniqueness of the model lies, not in the solution tech- 
nique, but in the mechanisms by which various geometries 
and combinations of boundary conditions can be accom- 
modated. Therefore, the sensitivity data we present here 
should apply in principle to any nonlinear SOR model 
using central differences on a rectangular grid. Differ- 
ences in the effect of the nonlinear coefficient, K(h) in 
this case, were not extensively explored, however. 

Model output consisted of values of h and of H at each 
node of the finite difference grid. For the regular grids 
of Section I,  the spacing of the coarse grid (Ax = Ay = 
1 m) was an even multiple of each of the finer spacings; 
thus, each node in the coarse grid had a spatially identi- 
cal counterpart in each of the finer grids. To make the 
largest possible number of four-way comparisons over 
the range of Ax and Ay, we plotted h as a function of grid 
spacing for each node of the coarsest grid. Fig. 2 shows 
such a plotting for a representative node. At each of these 
nodes, the plotted points for the three finer grid spacings 
were connected by a simple (without inflection), mono- 
tonic curve. Furthermore, almost all of the curves ap- 
proached zero slope as they neared Ax = Ay = 0. Ex- 
ceptions seemed to be related to the singular point at the 
junction between the infiltrating and impermeable parts 

FIG. 3 Distribution of differences in h between regular 
grid spacing of 0.125 m and irregular grid spacings of 
0.125, 0.25, and 0.5 m [dots show nodes of irregular 
grid], Section I, steady flow. 

of the upper surface. This is evidence that the SOR model 
was indeed converging. Extrapolating the curves to the 
h-axis gave estimates of h (ho) at Ax = Ay = 0. 

Improvement of estimation of h or H by decreasing the 
grid spacing is accomplished at the expense of compu- 
tation time, because the number of computational oper- 
ations on a two-dimensional grid is inversely proportional 
to the square of grid spacing. An irregular grid may pro- 
vide a means of compromising between cost and accuracy. 

Part of the upper surface boundary of Section I is 
impermeable, and the remainder is saturated. The great- 
est curvature in equipotentials will be expected in the 
neighborhood of the junction between the two types of 
boundaries. This region of strong curvature should prob- 
ably be covered with a fine grid, and coarser grids might 
then suffice for areas of lesser curvature. 

The dots on Fig. 3 show the locations of grid nodes 
for the irregular grid in which Ax and Ay took the values 
0.125, 0.25, or 0.5 m. The curves on Fig. 3 are lines of 
equal percent difference between h-values obtained with 
the irregular grid and h-values obtained with a uniform 
grid spacing of 0.125 m. The curves do not continue to 
the infiltrating and water table boundaries, because h is 
known exactly on these boundaries. 

When central differencing is used, Vitasek (1969) gives 
an order of accuracy of  AX AX)^) for a regular grid and 
O(Ax) for an irregular grid. However, in our case, the 
irregular grid yielded an h-distribution very close (<5 per- 
cent difference) to that obtained by using a uniform grid 
with the same spacing as the finest part of the irregular 
grid. 

The sensitivity of the steady-state SOR finite differ- 
ence model to grid spacing, as applied to Section I, is 
summarized in Table 1. The extrapolated solution re- 

TABLE 1. STATISTICS O F  COMPARISONS (PERCENTAGE 
DIFFERENCES) OF SOLUTIONS OF MODEL AT VARIOUS 
GRID SPACINGS TO EXTRAPOLATED SOLUTION WITH 

ZERO GRID SPACING. 

Grid spacing. m Mean, m Std. dev., m Max.,  m Min., m 

Regular 

Irregular 

0.125, 0.25. 0.5 2.2 2.0 9.2 0 
0.0625. 0.125, 0.25 1.3 1.2 6.6 0 



FIG. 4 Influence of grid spacing on equipotentisl l i e s  for Section I, steady flow. Solid black curves are for the irregular grid of 0.0625-, 0.125, and 
0.25-m spacing. Spacings for dashed c w e s  for the regular grids are given under each part of the figure. 

ferred to in the title of Table 1 was the ho- array obtained 
on the 1-m grid spacing from plots of the type portrayed 
by Fig. 2. The trend of values in Table 1 supports the 
claim, made for Fig. 2, that as grid size decreases, the 
solution converges toward the solution of the soil water 
flow equation. 

Fig. 4 shows how the effect of grid spacing was dis- 
tributed over the section. The solid curves are equipoten- 
tials (lines of equal hydraulic head, H) obtained using 
the irregular grid, where Ax and Ay took the values 0.0625, 
0.125, and 0.25 m. As indicated in Table 1, this grid 
probably most closely approximates the solution of the 
differential equation. The dashed curves represent the 
equipotentials for the coarser, regular grids, as indicated 
in the label for each part of the figure. 

Decreasing the grid spacing from 1 to 0.5 m produced 
the most striking improvement in the equipotentials. The 
1-m grid spacing gives irregularly shaped equipotentials. 
An irregular distribution of h or of H is a good indication 
that the grid spacing is too large to yield even a reasonable 
estimate of the h distribution. We also noticed in the 
several parts of Fig, 4 that sensitivity to grid size is 
apparently related to two-dimensionality of flow. On the 
right-hand sides of Fig. 4, where flow direction was es- 
sentially vertically downward, the curves obtained with 
the different grid intervals coincided. As the curves began 
to curve upward on the left side of each part of the figure, 
departures began to be apparent. 

Fig. 5 shows equipotentials for Section 11. The dashed- 
line curves were obtained using the largest regular grid 

FIG. 5 Influence of grid spacing on equipo- 
tential lines for Section 11, steady flow. Solid 
black curves are for 0.5-cm regular grid, dashed 
curves are for 1-cm regular grid, and solid 
dots resulted from an Irregular grid of 0.5 and 
1 cm. 

(1 cm), and the solid-line curve resulted from the 0.5-cm 
regular grid. The large dots represent the results ob- 
tained using the irregular grid of 0.5 and 1 cm. Fig. 6 
shows isolines of percent difference in the results between 
the irregular grid of 0.5- and 1-cm grid spacings and the 
regular grid of 0.5-cm spacing. 

Although Section I1 is quite different from Section 1 
in shape, scale, and boundary conditions, the observa- 
tions made with regard to Section I are essentially con- 
firmed in Figs. 5 and 6. The 1-cm regular grid, being 
too coarse, yielded irregular equipotentials. The 0.5-cm 
regular grid was an improvement, because the equipo- 
tential curves were smoother. The irregular grid of 0.5 
cm and 1 cm produced nearly the same results as the 
0.5-cm regular grid. 

In Fig. 5 sensitivity to grid size is much more apparent 
in the zone of nearly one-dimensional flow below the 
notch than in the one-dimensional, right-hand parts 
of Fig. 4. We also noticed that the vertical gradient 
( aH/ay )  in Fig. 5 increases with distance up the left- 
hand boundary. This is a reflection of the fact that soil 
water content decreases along the path from the lower 
boundary (h = O  cm) to the bottom of the notch (h = -30 
cm). Thus, hydraulic conductivity decreases in the same 
direction. Because the volume rate of flow must remain 
constant for steady flow, Darcy's law demonstrates that 
the gradient must increase when one-dimensional flow 
follows a path from wet to dry soil. In Fig. 4, soil water 
content is nearly constant down the right-hand side 
(top and bottom boundary conditions are the same), and 

FIG. 6 Distribution of percent difference in h 
between regular grid spacing of 0.5 cm and ir- 
regular grid spacings of 0.5 and 1 cm [dots 
show nodes of irregular grid], Section II, steady 
flow. 
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FIG. 7 Comparison of hydraulic gradient 
distributions in one-dimensional flow portions 
of Sections I and II, steady flow. 

the gradient is nearly uniform with depth as indicated 
by essentially equal spacing of the equipotentials. Fig. 7 
illustrates these observations. The circled points show 
that the gradient down the right-hand side of Section I 
is essentially constant, with the value one. This is the 
gravity component of gradient; therefore, the gradient 
in the soil water pressure head is zero. The squared points 
show the gradient up the left side of Section I1 between 
the water table and the bottom of the notch and show 
that there is considerable gradient in soil water pressure 
head. 

We conclude that sensitivity to grid spacing is influ- 
enced both by curvature of equipotentials (two dimension- 
ality of flow) and by variation in the magnitude of the 
gradient. 

SENSITIVITY OF A TRANSIENT AD1 MODEL 

Sensitivity of a transient finite difference model to 
spatial and temporal grid size is a much more complex 
problem than one involving only steady flows. The data 
we present here are not extensive, but they illustrate 
some interesting possibilities for consideration by those 
using finite difference models of transient phenomena. 
Further numerical experimentation is needed for more 
complete understanding of the relationships between 
the several factors that influence the accuracy and stability 
of finite difference approximations to the solution of equa- 
tion [2]. For transient problems, in particular, differences 
in K(h) and C(h) relationships may affect sensitivity to 
mesh size. 

The AD1 method of solution (Peaceman and Rachford, 
1955) was used in constructing a model for two- 
dimensional, transient, unsaturated porous media flow 
(Amerman, 1969). A section and boundary conditions 
similar to Section I, Fig. 1, but of slightly different pro- 
portions, were used in a sensitivity test of that model using 
regular, square grids. 

The initial condition was that of drainage to equilib- 
rium. At time zero, the dashed portion of the upper 
boundary of Section I was exposed to zero pressure head. 

I 
It became an infiltrating boundary, and flow discharged 
across the lower boundary. 

li 
Solution of equation [2] yielded data from which we 

plotted instantaneous equipotential diagrams, like those 
in Fig. 4, at the end of each time step. Plotting a few 
equipotentials from solutions, using different values of 
Ax and Ay while holding At constant, indicated essentially 

FIG. 8 Effect of time increments At on estimating infitration rate/time 
cune, Section I. 

the same phenomenon as the comparisons of Figs. 4 and 
5. Large values of Ax and Ay (i.e., coarse grids) resulted 
in irregular equipotential lines. 

The influence of At may be illustrated by considering 
the variation of infiltration rate with time, as in Fig. 8. 
For this comparison, Ax and Ay were held constant at 1 
cm. A fluctuating or irregularly shaped infiltration curve 
indicated a time interval that was much too coarse. 
However, the fluctuations damped out, so that even with 
excessively large At, a nearly correct solution resulted 
after infiltration had proceeded for a long time. 

A finite difference model is a discrete approximation 
to a continuous phenomenon. Equation [2] obeys the 
law of continuity, but the finite difference model only 
approximates continuity. Fig. 9 shows that, for Ax = Ay 
= 0.5 cm, when approximate equilibrium is reached, 
outflow exceeds inflow. The x marks at time = 180 sec 
show the equilibrium separation between inflow and out- 
flow with Ax = Ay = 1 cm. Since the agreement between 
inflow and outflow is better for the smaller grid interval, 
we conclude that decreasing Ax and Ay gives a better 
approximation to continuity. 

Fig. 10 is rather complicated, but when studied care- 
fully it shows how time and spatial increment sizes inter- 
acted to affect infiltration rate. An individual curve on 
this figure is a plot of infiltration rate versus time incre- 
ment size for a given grid increment size and at a given 

FIG. 9 Effect of grid interval, Ax, upon obedience of Bnite difference 
model to law of continuity. Curves are for Ax = Ay = 0.5 cm. Two x 
marks at 180 see show positions of equilibrium curves for Ax = Ay = 
I cm. 



FIG. 10 Effect of interaction of spatial and temporal 
grid spacings on eathated infiltration rate at selected 
infiltration times, Section I. 

infiltration time, i.e. the time elapsed since infiltration 
began. To illustrate, all of the data points in the group 
of curves that intersect the ordinate axis between infiltra- 
tion rates of 7 x lW3 and 8 x I F 3  cm/sec were obtained 
after water had infiltrated for 2 sec. Those in the next 
grouping down are estimates of infiltration rate at the 
end of 4 sec and so on. 

Within a group of curves for a given infiltration time, 
Ax varies between curves (Ax = Ay). In scanning down the 

ordinate axis we observed that within groups at success- 
ively longer infiltration times, the curves for different 
Ax intersected the ordinate axis closer to each other. 
Finally, after about 8 sec of infiltration, differences within 
the size range of Ax tested did not affect infiltration 
rate. We conclude, therefore, that one may be able to 
increase simulation efficiency by allowing Ax to increase 
with simulation time. 

An individual curve on Fig. 10 shows how, for a given 
Ax and a selected infiltration time, the solution converged 
to an estimate of a true solution as At tended toward zero. 
After 2 sec of infiltration, varying At with Ax = 1 cm 
yielded a smooth, monotonic curve which approached 
the horizontal at its intersection with the ordinate axis. 
Holding Ax constant at 0.5 cm yielded a fluctuating curve 
for which the fluctuations grew with increasing At. With 
constant Ax = 0.25 cm and varying At >0.1 sec, the fluctu- 
ations also grew as At increased, but in this case were so 
violent that even the estimated infiltration rate for the 
second At value could not be plotted at the scale of Fig. 
10. This reaction satisfies the definition of instability. 

Richtmyer and Morton (1967) give the necessary sta- 
bility condition for solving finite difference equations by 
explicit methods as: 

where o is a parameter which depends on equation coef- 
ficients (K in the case of equation [2]). For Ax <1, then, 
larger Ax values are less likely to lead to instability for a 
given series of At values. The results shown in Fig. 10 
are not inconsistent with equation [3]. 

The AD1 method is an implicit technique for solving 
finite difference equations and Richtmyer and Morton 
(1967) classify it as unconditionally stable. However, 
they discuss it only in the context of its application to 
linear equations. We conclude that the observed insta- 
bility for small Ax and At in the first few seconds of infil- 
tration simulation is an artifact of adapting a linear impli- 
cit method of solution to a nonlinear finite difference 
equation. 

If compatible values of Ax and At are used at the be- 
ginning of infiltration, Fig. 10 also shows that as infil- 
tration time advances (as one compares curves from top 
to bottom of the figure), larger and larger values of At 
give essentially the same estimate of infiltration rate as 
values very near zero. Thus, except for certain restric- 
tions which apparently apply near the beginning of a 
solution run, AD1 applied to a nonlinear finite difference 
equation obeys the well-known rule for implicit schemes 
that At can be increased as solution time advances. 

Further numerical experiment might show how both 
Ax and .At can be increased with solution time so as to 
obtain a simulation scheme with optimum efficiency. 

ORDER OF ACCURACY 

We noted earlier that a regular grid should yield an 
accuracy of O((Ax)*). If Ax is halved, for example, the 
discretization error should be quartered. Inspection of 
Table 2, developed using SOR data from the steady- 
state case, shows that the error varied more nearly with 
Ax rather than (Ax)=, at least for the coarser grids. A 
regular grid spacing of 0.5 m resulted in an estimated 
error that was about half of that of the 1-m grid size. Also, 
the error for the 0.25-m regular grid was about one-sixth 
of that for the 1-m grid size as compared with the one- 
sixteenth expected. Table 2 shows comparisons for all 
grids supplied to Section I using the SOR model. Com- 
parisons for the small grid sizes may not be very useful, 
however, because ho is estimated by visual curve fitting 
and extrapolation. The magnitude of the unknown error 
between estimated and true ho may approach the mag- 
nitude of the error between h for a small grid spacing 
and estimated ho. 

Possible reasons for the discrepancies between the 
second and fourth columns of Table 2 include non- 
linearity of the flow equation and the use of Neumann 
boundary conditions. Finite difference theory for non- 
linear systems is much less comprehensive than for linear 
systems (Greenspan, 1965) but experience has shown that 
linear finite difference methods often can be successfully 
used for nonlinear problems. However, certain details 
of the methods, like the influence of the overrelaxation 
factor in the SOR method, do not conform with linear 
theory and experience (Amerman, 1976b). Prediction of 
order of accuracy, based on grid intervals, may be 
another nonconforming detail. 

Textbooks discuss order of accuracy in the context 



TABLE 2. COMPARISON O F  PREDICTED AND ESTIMATED 
OBSERVED ORDERS OF ACCURACY USING SOR*. 

Grid spacing (Ax) Predicted Mean percent Observed 
[ ( A X P I  error (meanl30.7) 

Regular 

Irregular 

'SOR-The successive overrelaxation technique of finite differencing. 

of grid shape and spacing and finite difference technique 
but not of boundary condition. Recall that a Neumann- 
type boundary condition is one for which the gradient of 
the dependent variable is normal to the boundary. In a 
finite difference scheme, this gradient must be specified 
by a finite difference expression and, therefore, constitutes 
a level of approximation over and above that attributable 
to the finite difference scheme (Greenspan, 1973). This 
approximation may contribute to decreasing the accuracy 
of a given grid and finite difference technique. 

Textbooks and reference works (Forsythe and Wasow, 
1960; Smith, 1965; Vitasek, 1969) discuss order of ac- 
curacy in the context of an apparently dimensioned 
Ax. The scales of Sections 1 and I1 (Fig. 1) differ by two 
orders of magnitude. Yet, the number of spatial inter- 
vals into which a unit length of each section must be 
divided to achieve reasonably accurate solutions is essen- 
tially the same. This observation extends to the use of 
varying grid sizes in an irregular mesh and holds even for 
dissimilar geometry. Specifically, the visual smoothness 
characteristics are similar between the equipotential 
curves of Section I, for which Ax and Ay were 1 and 0.5 m, 
and the curves of Section 11, for which Ax and Ay were 
I and 0.5 cm. 

We conclude that there is no computatinal advantage 
gained by modeling a large cross section with a geo- 
metrically similar smaller one; when using a finite differ- 
ence technique both require about the same number of 
nodes. 

Thus, when curvature of equipotentials and hydraulic 
gradients are accounted for, the sizes of Ax and Ay may 
be determined, not as specific lengths, but as proportions 
of the unit length of the cross section in the horizontal 
and vertical directions, respectively. 

SUMMARY AND CONCLUSIONS 

Two nonlinear,  two-dimensional, finite difference 
models of soil water flow-one a steady-state simulation 
using successive overrelaxation methods, the other a 
transient model using alternating direction implicit 
techniques-were investigated for sensitivity to grid 
spacing. In each case, finite difference formulation was 
by central differencing on a square or rectangular grid. 

There is no rigorous method for determination of 
discretization error for nonlinear finite differencing. The 
investigation was empirical, using data produced by 
several model runs with different grid spacings. 

The several runs did not cover all possible situations. 
For example, we made no attempt to determine whether 
the form of K(h) interacts with factors like geometry and 

boundary conditions to affect grid spacing. However, the 
data were sufficient for us to make several tentative con- 
clusions regarding finite difference mesh design for un- 
saturated soil water flow modeling: 

1 Spatial grid spacing is a function of curvature of 
equipotential lines and of the spatial rate of change of 
hydraulic gradient in the direction of flow. 

2 Computational savings can be realized with very 
little loss of accuracy by designing an irregular mesh where 
the smallest grid sizes are used in regions of the expected 
sharpest curvature of equipotentials or greatest rate of 
change of gradient. Larger grid sizes may be used else- 
where. 

3 After taking conclusions 1 and 2 into account, the 
actual dimensions of grid intervals is a matter of scale. 
For reasonably accurate finite difference modeling, a 
unit of length of a section may require subdivision into n 
grid intervals, regardless of whether the overall dimen- 
sion of the unit is 1 or 10 m. This must not be construed 
to mean that the solutions to geometrically similar sections 
will be scaled reproductions f each other. 

4 Much more numerical investigation is needed to 
come to firm conclusions regarding time and space grids 
for transient flow. Seemingly, both time intervals and 
grid intervals may be increased as a solution progresses. 

5 Although the AD1 method of finite differencing is 
unconditionally stable when applied to linear processes, 
it is unstable under certain conditions with nonlinear 
phenomena. The use of AD1 techniques is not seriously 
hampered, however, because one must adjust At only 
for short periods either at the start of a solution or after 
an abrupt change in boundary conditions while a solution 
is progressing. 

6 For the nonlinear equations which express unsatur- 
ated soil water flow, order of accuracy for square grids 
was nearer to being a function of grid interval size than 
to the square of grid interval size, as predicted by linear 
theory. 

7 Desired accuracy is a function of individual prefer- 
ence and the parameters of given situations, but grids 
that are manifestly too coarse in either space or time are 
easily recognizable in the results. If Ax and Ay are too 
large, equipotentials exhibit irregular shapes. If At is too 
large, model outputs such as infiltration rates fluctuate 
with time. For At which is only moderately too large the 
fluctuations damp out, so that only initial estimates 
of the quantity will be affected. 

Only two sections were considered in the study but 
they were quite different in shape and in boundary condi- 
tions. Based not only on the experience with them but also 
on less-documented experience with other cases, we feel 
that our conclusions in this investigation may be used 
as a general guide in designing or modifying finite dif- 
ference grids. Continuing experience with finite differ- 
ence applications may modify the above conclusions some- 
what and may eventually lead to clearer understanding of 
discretization errors in nonlinear finite differencing with 
mixed boundary conditions. 
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