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Refl ectance Spectroscopy Detects Management and 
Landscape Differences in Soil Carbon and Nitrogen

Soil & Water Management & Conservation

The soil quality concept involves the capacity of a soil to function; included 
among the soil functions are water fl ow and retention, physical stability 
and support, retention and cycling of nutrients, and maintenance of biodi-

versity, habitat, and crop productivity (Doran and Parkin, 1994). Th us, soil quality 
not only includes sustaining crop productivity but also maintaining environmental 
quality, and it is likely that enhancement of soil quality would be a major barrier 
against the degradation of water and air quality (Kennedy and Papendick, 1995). 
Best management practices to improve soil quality encompass an array of strategies, 
including reduced or no tillage, crop rotation, cover crops, reduced chemical inputs, 
and more effi  cient use of chemical inputs, such as may be found with variable-rate 
application.

Th e evaluation of management impacts on soil quality is based on the mea-
surement of soil quality indicators (SQI) (Karlen et al., 2003). Although SQI most 
directly portray the current state of management systems, assessments using select-
ed SQI are perhaps most valuable to further improve future, sustainable land man-
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Many studies have calibrated visible and near-infrared (VNIR) diffuse refl ec-
tance spectroscopy (DRS) to various soil properties; however, few studies have 
used VNIR DRS to detect treatment differences in controlled experiments. 
Therefore, our objective was to investigate the ability of VNIR DRS to detect 
treatment differences in topsoil organic C (SOC) and total N (TN) compared 
with standard dry combustion analysis. A long-term (since 1991) experiment 
in central Missouri, where cropping systems were replicated across a typical 
claypan soil landscape was studied. Soil samples from two depths (0–5 and 
5–15 cm) were obtained in 2008 at summit, backslope, and footslope posi-
tions for three grain cropping systems. Estimates of SOC by VNIR DRS using 
oven-dried soil samples and an independent calibration set were very good, 
with R2 = 0.87 and RMSE = 2.4 g kg−1. Estimates of TN were somewhat less 
accurate (R2 = 0.79, RMSE = 0.24 g kg−1). Field-moist VNIR DRS results were 
also good, but with 13 to 17% higher RMSE. Trends in differences among treat-
ment means were very similar for dry combustion, oven-dry soil VNIR, and 
fi eld-moist VNIR. Dry combustion was best at separating treatment means, fol-
lowed by dry soil VNIR and fi eld-moist VNIR. Differences among methods were 
relatively minor for 0- to 5-cm depth samples but more pronounced for 5- to 
15-cm samples. Effi ciency of the VNIR method, particularly when applied to 
fi eld-moist soil, suggests that it deserves consideration as a tool for determining 
near-surface SOC and TN differences in fi eld experiments.

Abbreviations: CRP, conservation reserve program; DRS, diffuse refl ectance spectroscopy; 
PLS, partial least squares; SOC, soil organic carbon; SQI, soil quality indicators; TN, total 
nitrogen; VNIR, visible–near-infrared.
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agement practices. Measurements of SQI generally involve fi eld 
collection of soil samples and laboratory analysis. Th e labor and 
expense involved make this approach more suited to research 
investigations than to monitoring production fi elds because 
many SQI can exhibit strong spatial dependence at the fi eld scale 
(Cambardella et al., 1994; Jung et al., 2006), requiring dozens or 
hundreds of measurements per fi eld for good representation. To 
transfer the soil quality approach to practice, methods that can 
effi  ciently map SQI across fi elds and landscapes are needed.

Soil organic matter (SOM) and SOC (the C within the 
SOM) are considered key SQI because of the integral role of 
SOM in soil biological, physical, and chemical processes (Carter, 
2002). A technique that has been successfully used to estimate 
SOC and numerous other soil properties is DRS. Most com-
monly, soil sensing by DRS uses the visible (400–700 nm), near-
infrared (NIR; 700–2500 nm), or combined VNIR (400–2500 
nm) wavelength ranges (Sudduth et al., 1997; Viscarra Rossel et 
al., 2006). Th is method is based on the interaction of light with 
the surface at which it is directed. Characteristics of the refl ected 
light are infl uenced by the chemical and physical properties of the 
target, such that these properties can be estimated through sta-
tistical analysis of the refl ectance spectrum (Malley et al., 2004).

Th e DRS technique has been used to estimate SOC (or 
SOM), TN, and other soil properties in numerous studies, as re-
viewed by Malley et al. (2004), Viscarra Rossel et al. (2006), and 
Stenberg et al. (2010). Many of these studies have drawn soils from 
a wide geographic range and thus do not directly address the use of 
DRS to detect diff erences in soil properties within fi elds or land-
scapes. Studies that have investigated within-fi eld DRS estimation 
of soil properties have had varying degrees of success. When varia-
tion in the parameter of interest was small, generally poor estima-
tions of SOM (Sudduth et al., 2010) and SOC (Udelhoven et al., 
2003) were obtained at the fi eld scale. Brown et al. (2005) and 
Lee et al. (2010) reported inaccurate within-fi eld SOC estimation 
when using an independent calibration data set. Wetterlind et al. 
(2010) found good estimation of SOM and TN in one fi eld but 
poor results in another, suggesting that more than the 25 calibra-
tion samples they used might be necessary. McCarty and Reeves 
(2006) reported good estimation of both C and N within a 20-ha 
fi eld. Th us, the question of whether VNIR DRS can accurately es-
timate SOC and TN within a particular site is unresolved.

Th e majority of soil DRS studies have been conducted with 
dried and sieved soil samples; however, the ability to collect valid 
data on fi eld-moist samples would improve the effi  ciency of the 
data collection process by removing the drying and sieving step. 
Furthermore, the ability to obtain accurate estimations using moist 
soils is necessary for successful in situ DRS soil measurement 
(Christy, 2008). In previous research, calibrations using fi eld-moist 
or rewetted soil have generally been less accurate than those with 
air- or oven-dried soil. Sudduth and Hummel (1993) obtained 
DRS estimates of SOC using rewetted soil samples in the labora-
tory. Th ey found a 10 to 15% increase in SOC estimation errors 
when the data were obtained from soils at a range of water contents 
compared with oven-dried samples. Chang et al. (2005) applied 

NIR-DRS on sieved moist and air-dried soil samples. Th ey found 
that total C, SOC, inorganic C, TN, moisture, CEC, and clay 
content could be estimated with reasonable accuracy for both the 
air-dried (R2 > 0.76) and moist (R2 > 0.74) soils. Th ey stated that 
prediction using moist samples could be achieved as long as diverse 
soil samples from the same region were included in the calibration. 
Kusumo et al. (2008) developed a fi eld method for measuring NIR 
DRS on a fl at, sectioned horizontal surface of a fi eld-moist soil core 
using a purpose-built contact probe attached by fi ber optic cable to 
a spectrometer. Th eir best models estimated total C and N with R2 
values of 0.75 and 0.86, respectively. Morgan et al. (2009) estimated 
organic and inorganic C on soil cores with four diff erent sample 
treatments: air-dried ground, air-dried intact, fi eld-moist intact, 
and fi eld-moist smeared samples. Th ey reported similar results for 
the two air-dried treatments but a reduction in prediction accuracy 
with fi eld-moist samples. Waiser et al. (2007) estimated soil clay 
content using the same samples and treatments used by Morgan et 
al. (2009). For total clay content, they found that air-dried intact 
samples provided the highest accuracy, followed by fi eld-moist in-
tact and air-dried ground samples, and fi nally fi eld-moist smeared 
samples. Th ey concluded that natural soil heterogeneity had little 
eff ect on the predictions but that smearing of the soil surface did 
reduce accuracy by creating specular refl ectance and masking ab-
sorbance features. Bricklemyer and Brown (2010) compared in situ 
estimates of organic C and clay obtained with a commercial mobile 
spectrometer and those obtained using a laboratory spectrometer 
with dried and sieved samples. Th ey found that the mobile spec-
trometer estimates were less accurate in all cases and suggested pos-
sible causes, including soil heterogeneity, variable fi eld moisture 
content, and sample presentation issues.

Sensing of SOC and other SQI would be particularly advan-
tageous for the claypan soils in north-central and northeastern 
Missouri and southern Illinois because many claypan soil prop-
erties can be extremely variable across the landscape and within 
the soil profi le ( Jung et al., 2006, 2008; Jiang et al., 2007a). Th ese 
soils, classifi ed as Epiaqualfs by Soil Survey Staff  (1999) and 
Stagnic Luvisols by the IUSS Working Group WRB (2006), have 
a restrictive high-clay subsoil layer (the claypan) occurring at vary-
ing depth below the soil surface. Summit soils in claypan land-
scapes have a depth to the claypan horizon of around 30 to 40 
cm, decreasing to as little as 5 to 15 cm on eroded backslopes and 
increasing to as deep as 100 cm or more on depositional footslope 
areas. Surface soil textures are silty clay loam to silty clay (Young 
and Geller, 1995). Variations in claypan profi le properties across 
the landscape greatly infl uence the profi le water holding capac-
ity ( Jiang et al., 2007b), hydraulic conductivity (Th ompson et al., 
1991; Yang et al., 2003; Jiang et al., 2007a), and plant root devel-
opment (Wang et al., 2003; Myers et al., 2007).

In previous research on claypan soils, SOC and TN were 
responsive to diff erential management. An agroforestry system 
showed increases of up to 38 and 46% for SOC and TN, respec-
tively, in permanent tree and grass buff er areas compared with ad-
jacent annual cropping systems 8 yr aft er establishment (Bailey et 
al., 2009). Jung et al. (2008) reported little diff erence in soil quality 
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properties, including SOC and TN, between tilled and no-till an-
nual cropping systems 12 yr aft er initiation. Th ey did fi nd, how-
ever, that SOC increased signifi cantly with 12 yr of Conservation 
Reserve Program (CRP) management. At the 0- to 7.5-cm depth, 
CRP system SOC increased during the period by 33% and TN 
increased by 34%. Jung et al. (2008) also reported an eff ect of 
landscape position, suggesting that a high sampling density may 
be needed to accurately characterize SOC and TN on claypan soil 
landscapes. Ideally, this intensive data acquisition would be accom-
plished using sensor-based measurements such as VNIR DRS.

Th us, the goal of this study was to determine the ability of 
VNIR DRS to distinguish diff erences in claypan soil quality among 
cropping systems and landscape positions on the basis of topsoil 
SOC and TN. Our specifi c objectives were to: (i) evaluate the 
performance of VNIR DRS analysis using both oven-dried and 
fi eld-moist sieved soil samples; and (ii) compare the performance 
of VNIR DRS in detecting treatment diff erences with that of SOC 
and TN data from standard dry combustion laboratory analysis.

MATERIALS AND METHODS
Study Site

Th e study was conducted on a 12-ha site 2 km from 
Centralia, MO (39°13´ N, 92°7´ W) in Major Land Resource 
Area 113, the Central Claypan Region (NRCS, 2006). Th e 
site encompasses three landscape positions: summit, backslope, 
and footslope (Fig. 1). Soils were delineated on the basis of an 
Order 1 soil survey conducted in 1991. Th e summit landscape 
position was mapped as Adco (a fi ne, smectitic, mesic Vertic 
Albaqualf ) silt loam with 0 to 1% slopes; the backslope position 
was mapped as Mexico (a fi ne, smectitic, mesic Vertic Epiaqualf ) 
silty clay loam with 1 to 3% slopes; and the footslope landscape 
position was mapped as Mexico silt loam with 1 to 2% slopes 
and somewhat poorly drained (Fig. 1). Th e landscape was linear 
to slightly convex at the summit position and linear to slightly 
concave in the backslope and footslope landscape positions. Th e 
diff erence in elevation between the summit and footslope posi-
tions was about 2 to 3 m. Th e subsoil argillic horizon, typical of 
claypan soils, was characterized by the abrupt occurrence of silty 
clay loam, silty clay, or clay at varying depths.

Cropping systems were established in 1991 to investigate the 
eff ects of tillage, rotation, and other management practices on crop 
production and soil and water quality. Th e experimental design was 
a randomized complete block with three blocks (i.e., replications), 
where all rotation phases of each cropping system were present each 
year. Each of the 30 plots measured 18 by 189 m (0.35 ha) running 
east–west parallel to the slope direction (Fig. 1) and thus each land-
scape position was included within each plot. Th ree grain cropping 
systems were selected for study: mulch tillage corn (Zea mays L.)–
soybean [Glycine max (L.) Merr.], no-till corn–soybean, and no-till 
corn–soybean–wheat (Triticum aestivum L.). Th ree grass systems 
were also studied: a CRP cool-season grass mixture (CRP-C), a 
warm-season CRP mixture (CRP-W), and mixed grass harvested 
as a hay crop (HAY). Unlike the other cropping systems, which 
were established in 1991, CRP-W and HAY were established in 

2001; previously, those areas had been in CRP-C. Background 
soil profi le data were obtained from the experimental area in 1991 
(Jung et al., 2010). Descriptions of the six management systems are 
given in Table 1, and additional information about the experimen-
tal area can be found in Ghidey et al. (2005).

Soil Sampling and Analysis
Soil samples were collected in November 2008 from each of 

the six cropping systems at the center of each of the three land-
scape positions (summit, backslope, and footslope) for a total of 
18 treatments. All three replications were included. Th e grain 
cropping system plots sampled were in the soybean year of the 
rotation in 2008. Samples were obtained for two diff erent depth 
increments, 0 to 5 and 5 to 15 cm. For each site and depth, a total 
of 20, 3-cm-diameter cores were collected to provide a reasonable 
fi eld estimate. Cores were distributed evenly across row positions 
to equally sample between- and within-row eff ects. Samples were 
sealed in plastic bags and stored at 4°C before processing.

Field-moist soil samples were pushed through an 8-mm screen 
for moist-soil spectral data acquisition. Aft er spectral scanning at 
room temperature, samples were dried at 105°C for 24 h, crushed 
and passed through a 2 mm screen, and then used for dry-soil spec-
tral data acquisition. A subsample of the oven-dry soil was ground 
to a fi ne powder using a mortar and pestle. Th ese ground samples 
were used to determine SOC and TN by dry combustion methods 
with a LECO Tru-Spec C/N Analyzer (LECO Corp., St. Joseph, 
MI) based on Nelson and Sommers (1996).

To provide an independent calibration data set for the 
VNIR DRS technique, additional soil samples were obtained 

Fig. 1. Plot layout with soil series, elevation, and depth to the claypan 
horizon for the research site near Centralia, MO. Mapped soils 
include Adco silt loam, 0–1% slope (1), Mexico silty clay loam, 1–3%, 
eroded (2), and Mexico silt loam, 1–2% slope (3). Plots used for this 
study are labeled with the cropping system treatment: MTCS, mulch 
tillage corn–soybean rotation; NTCS, no-till corn–soybean rotation; 
NTCSW, no-till corn–soybean–wheat rotation; CRP, Conservation 
Reserve Program. The CRP plots were further split in thirds lengthwise 
for the three grass cropping systems of this study.
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from other claypan-soil sites located within a few kilometers 
of the study site and under various management systems. Th ese 
included no-till and tilled cropped fi elds, grass pastures, and a 
prairie site (n = 107). Soil sampling and analysis procedures were 
as described above.

Spectral Data Acquisition
Soil spectral refl ectance data were obtained in the laboratory 

using an ASD FieldSpec Pro FR spectrometer (Analytical Spectral 
Devices, Boulder, CO). Spectra recorded between 400 and 2500 nm 
were output at a 5-nm interval. Each soil spectrum was obtained as 
the mean of 30 scans. Th e spectrometer data collection soft ware auto-
matically adjusted the data for dark current variations using dark cur-
rent scans obtained at the beginning of each data collection session 
and at least every 30 min thereaft er. A Spectralon (Labsphere Inc., 
North Sutton, NH) refl ectance standard was scanned aft er every 10 
soils and used to convert the raw spectral data to decimal refl ectance.

Sample preparation varied between the oven-dry and fi eld-
moist samples. For the oven-dry refl ectance measurements, ap-
proximately 15 cm3 of soil was poured into a glass-bottomed sam-
ple cup and leveled with a metal spatula. Th e sample was placed 
on the ASD “mug lamp” sample stage, where it was illuminated 
from the bottom by a halogen lamp, and the refl ected light from 
an approximately 12-mm-diameter area was transmitted to the 
spectrometer through a fi ber optic bundle. In preliminary tests, 
this approach was not satisfactory for many of the fi eld-moist sam-
ples, particularly those from high-clay backslope positions. Th ese 
samples formed large plastic “clumps” that left  many open voids 
against the glass cup bottom and thus did not provide a consistent 
surface for scanning through the glass. Field-moist samples were 
scanned from the top by inverting the mug lamp over the top of the 
sample cup. Less clayey samples were leveled with a metal spatula 
similarly to the oven-dry samples. For the higher clay samples, it 

was oft en necessary to smooth the samples with the spatula to ob-
tain a fl at surface for refl ectance scanning. Th us, while some of the 
fi eld-moist samples had a textured surface, others were smeared, 
similar to the samples used by Morgan et al. (2009).

Spectral Analysis
Partial least squares (PLS) regression, implemented in 

ParLeS version 3.1 (Viscarra Rossel, 2008), was applied to the 
separate 107-sample data set described above to develop calibra-
tion models relating SOC and TN to refl ectance spectra collect-
ed at a 5-nm sampling interval. Th e PLS method is widely used 
in chemometrics, remote sensing, and spectral data processing to 
deal with large data sets containing highly correlated variables. 
It is a full-spectrum method in that it uses information from all 
the wavelengths in the original spectrum to develop a calibration 
using linear regression on a new set of variables (factors). Th e fac-
tors are statistically independent from one another and are con-
structed such that they capture the variation in both the response 
(soil) and predictor (spectral) variables (Beebe and Kowalski, 
1987). As in all multivariate regression, it is important to select 
the number of factors that best represents the calibration data 
without overfi tting. To do this, we applied a leave-one-out cross-
validation procedure within the ParLeS soft ware. Th e appropri-
ate number of factors used was that which minimized the Akaike 
information criterion. Th e fi nal calibration model was obtained 
from the full data set using this number of factors.

Many diff erent preprocessing transformation methods that 
may be appropriate for PLS spectral analysis were available in 
the ParLeS soft ware (Viscarra Rossel, 2008). Based on the re-
sults of our past research (La et al., 2008), we selected a num-
ber of transformations and combinations for preliminary analy-
sis. Following the best results in this preliminary analysis, each 
spectral scan was (i) transformed from refl ectance to absorbance 

Table 1. Description of the six management systems used in the study. All systems were established in 1991 unless otherwise noted.

Cropping System Description Fertilizer input Yield goal

MTCS mulch tillage† with a corn–soybean rotation 190 kg N ha−1for corn;
lime, P, and K by soil test

10.1 Mg ha−1 for corn; 
2.5 Mg ha−1 for soybean

NTCS no-till with a corn–soybean rotation 151 kg N ha−1 for corn;
lime, P, and K by soil test

7.5 Mg ha−1 for corn; 
2.5 Mg ha−1 for soybean

NTCSW mulch tillage (1991–1995) then no-till (1996–2004) with a corn–
soybean–wheat rotation, with either hairy vetch (Vicia villosa Roth) 
(1994–1995) or red clover (Trifolium pretense L.) (1996–2008) cover crop 
following wheat; cover crop harvested as hay crop (2004–2008)

150 kg N ha−1 for corn,
101 kg N ha−1 for wheat;
lime, P, and K: by soil test

8.7 Mg ha−1 for corn; 
2.5 Mg ha−1 for soybean; 
4.0 Mg ha−1 for wheat

CRP-C cool-season grasses and legumes suitable for the Conservation Reserve 
Program: Orchard grass (Dactylis glomerata L.), smooth bromegrass 
(Bromus inermis Leyss.), timothy (Phleum pratense L.), tall fescue (Festuca 
arundinacea Schreb.), alfalfa (Medicago sativa L.) (1991); hairy vetch, red 
clover, lespedeza sp., birdsfoot trefoil (Lotus corniculatus L.) (1992).

lime, P, and K by soil test none

CRP-W established in 2001; warm-season grasses and legumes suitable for 
the Conservation Reserve Program: big bluestem (Andropogon gerardi 
Vitman), Indian grass [Sorghastrum nutans (L.) Nash], tall dropseed 
[Sporobolus compositus (Poir.) Merr.], little bluestem (Andropogon 
scoparius Michx.), lespedeza, ladino clover (Trifolium repens L.)

lime, P, and K by soil test none

HAY established in 2001; hay crop, including cool-season grasses Canada 
wild rye (Elymus canadensis L.) and Virginia wild rye (Elymus virginicus 
L.) and warm-season grasses big bluestem, eastern gama grass [Tripsacum 
dactyloides (L.) L.], Indian grass, ladino clover

90 kg N ha−1; lime, P, 
and K by soil test

8960 kg ha−1 for hay;
harvest 2–3 times yr−1

† Tillage system that targets maximum retention of crop residues (30% or more) on the soil surface.
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[log10(1/refl ectance)], and (ii) mean normalized (i.e., divided by 
its mean value) for analysis.

Th e best cross-validated calibration models were applied to 
the spectral data sets from the cropping systems plots to estimate 
SOC and TN across cropping system and landscape position. 
Model evaluation was based on the R2, RMSE, and the ratio of 
the standard deviation to the RMSE (RPD). Th e RPD is use-
ful when comparing the results from data sets containing diff er-
ent degrees of variability, with a higher RPD indicating a more 
accurate prediction. Of the potential 108 samples (6 cropping 
systems × 3 landscape positions × 2 depths × 3 replications), fi ve 
were deleted due to missing laboratory or spectral data, leaving a 
total of 103 for statistical analysis.

Statistical Analysis
Th e data were analyzed in a split-plot treatment arrange-

ment, with cropping system as the main plot and landscape 
position as the split plot. Because landscape position was not 
randomized, a repeated measures analysis (Littell et al., 2002) 
was used to assess the response variables of SOC and TN using 
PROC MIXED in SAS (SAS Institute, 2005). Mean separations 
using LSD were determined for treatment main eff ects when F 
tests were signifi cant at P values ≤ 0.05. Independent analyses 
were conducted for each data source (fi eld-moist soil DRS, oven-
dry soil DRS, and dry combustion laboratory analysis) and for 
each depth interval (0–5 and 5–15 cm).

RESULTS AND DISCUSSION
Estimating Soil Organic Carbon and Total 
Nitrogen by Visible–Near-Infrared Diffuse 
Refl ectance Spectroscopy

Summary statistics for laboratory dry combustion SOC and 
TN analysis of the plot data set and independent calibration data 
set are given in Table 2. Th e two data sets were relatively simi-
lar in composition, although the means and standard deviations 
were somewhat higher in the plot data set. Th is was probably 
because approximately 50% of the plot data were from the grass 
systems, with generally higher SOC and TN, while only about 
25% of the calibration data were from grass systems.

Th e performance of the cross-validated calibration models 
for refl ectance estimation of SOC and TN using PLS regression 
was good for the oven-dry soil. Th e model performance with 

fi eld-moist samples, however, was worse in terms of both R2 and 
RPD (Table 3). Refl ectance characteristics in VNIR wavelengths 
are primarily determined by chemical and physical characteris-
tics of the sample surface. Th e physical structure of the oven-dry 
samples was much more consistent than that of the wet samples, 
where samples with higher clay content were somewhat smeared 
due to the manual manipulation necessary to obtain a fl at sur-
face. Morgan et al. (2009) stated that one possible reason for 
reduced accuracy with fi eld-moist, intact, smeared samples was 
that cores with a high clay content smeared more than others, 
leading to greater variability. It seems likely that a similar eff ect 
occurred here with the fi eld-moist sieved samples. Additionally, 
Lobell and Asner (2002) reported that the water content in wet 
samples may decrease accuracy because increasing water content 
can reduce the strength of an important absorption feature of C 
and N. Malley et al. (2002) also reported less accurate prediction 
of soil properties including organic matter and NH4–N with 
fi eld-moist soils than dry soils.

Application of the calibration models to the plot data set re-
sulted in SOC and TN estimates that were of similar to slightly 
better accuracy than in the calibration set, with oven-dry sample 
results again of higher accuracy than fi eld-moist sample results 
(Table 3). Th e most accurate estimation (R2 = 0.87, RPD = 2.48, 
Fig. 2) was for SOC using oven-dry soil samples, but TN estima-
tion was also good. Similar SOC and TN estimation accuracies 
were reported by Lee et al. (2009) and Chang et al. (2001). Field-
moist soil estimates had 13 to 17% higher RMSE values than oven-
dry soil estimates (Table 3). Estimation residuals (data not shown) 
were examined for trends related to cropping system or landscape 
position. In no case was there a signifi cant eff ect of landscape posi-
tion, suggesting that the calibration model was appropriate. Th ere 

Table 2. Descriptive statistics of measured soil organic C 
(SOC) and total N (TN) for the research plot data set and the 
spectral calibration data set.

Parameter Mean SD Max. Min.

———————— g kg−1 ————————
Research plots (n = 103)

SOC 16.8 6.02 31.0 9.3

TN 1.59 0.48 2.86 0.76

Spectral calibration (n = 107)

SOC 15.1 4.47 32.5 8.7
TN 1.45 0.40 3.02 0.79

Table 3. Partial least squares (PLS) calibration cross-validation and plot data estimation statistics for soil organic C (SOC) and total 
N (TN) of oven-dry and fi eld-moist soil samples.

Parameter NF†
Calibration cross-validation Plot data estimation

R2 RMSE RPD‡ Bias R2 RMSE RPD Bias

g kg−1 g kg−1 g kg−1 g kg−1

Oven-dry sample analysis

SOC 8 0.80 1.98 2.26 −0.01 0.87 2.43 2.48 −0.55

TN 8 0.71 0.22 1.85 0.00 0.79 0.24 2.01 −0.09

Field-moist sample analysis

SOC 9 0.58 2.90 1.54 0.02 0.81 2.75 2.19 −0.11
TN 7 0.49 0.29 1.40 0.00 0.68 0.28 1.71 −0.04

† Number of PLS factors used in model.
‡  Ratio of standard deviation to RMSE.
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was a signifi cant eff ect of cropping system, however, for both SOC 
and TN and for both oven-dry and fi eld-moist calibrations. Th us, 
separate models by cropping system might be expected to provide 
more accurate information; however, we did not have a suffi  cient 
number of soil samples to implement and evaluate this approach.

According to classifi cations proposed by Chang et al. (2001) 
and Lee et al. (2009), oven-dry soil estimates of SOC and TN 
were in the good category, while fi eld-moist estimates could be 
described as fair. It should be noted, however, that any such clas-
sifi cation of VNIR DRS accuracy levels is somewhat arbitrary. 
Th e real test is whether the estimate is accurate enough for the 
task at hand—in this case, to provide a similar level of discrimi-

nation among cropping system and landscape position eff ects as 
was obtained with standard laboratory data.

Discriminating Treatment Differences 
in Soil Organic Carbon and Total Nitrogen

Analysis of variance results for estimates of SOC and TN at 
the two depth intervals and by all three analysis methods are given 
in Table 4. In all cases, both cropping system and landscape position 
were signifi cant (α = 0.05) sources of variation with laboratory dry 
combustion analysis. Estimates using VNIR with oven-dry sieved 
samples showed signifi cant diff erences in seven of the eight com-
binations (soil property by depth by main eff ect), while with fi eld-
moist samples there were signifi cant diff erences in only four combi-

Fig. 2. Visible–near-infrared (VNIR) spectroscopy-estimated vs. laboratory-measured values of soil organic C (SOC) and total N (TN) for oven-dry 
and fi eld-moist plot soil samples collected in 2008.
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Table 4. Analysis of variance of soil organic C (SOC) and total N (TN) data determined by dry combustion laboratory analysis, 
oven-dry-sample visible–near-infrared (VNIR), and fi eld-moist VNIR measurements for two depth intervals.

Analysis 
method

Source 
of variation df

ANOVA P > F

SOC TN

0–5 cm 5–15 cm 0–5 cm 5–15 cm

Laboratory analysis 
by dry combustion

block 2 – – – –
cropping system (CS) 5 <0.01 <0.01 <0.01 <0.01

landscape position (LP) 2 <0.01 <0.01 0.02 <0.01

CS × LP 10 0.12 0.91 0.19 0.78

VNIR estimation with 
oven-dry samples

block 2 – – – –

CS 5 <0.01 0.11 <0.01 0.04

LP 2 <0.01 0.01 <0.01 <0.01

CS × LP 10 0.37 0.89 0.33 0.67

VNIR estimation with 
fi eld-moist samples

block 2 – – – –

CS 5 <0.01 0.08 <0.01 0.56

LP 2 0.14 0.01 0.42 0.04
CS × LP 10 0.21 0.17 0.95 0.18

Fig. 3. Main effect means of soil organic C (SOC) and total N (TN) by dry combustion laboratory analysis, oven-dry soil visible–near-infrared 
(VNIR) spectroscopy estimation, and fi eld-moist soil VNIR estimation at two depth intervals. Within a panel, treatments with the same lowercase 
or uppercase letters are not signifi cantly different (α = 0.05). Management systems: MTCS, mulch tillage corn–soybean rotation; NTCS, no-till 
corn–soybean rotation; NTCSW, no-till corn–soybean–wheat rotation; CRP-C and CRP-W, Conservation Reserve Program cool-season and warm-
season grasses, respectively; HAY, mixed-grass hay.
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nations. As interactions were not signifi cant in any case, main eff ect 
means by cropping system and landscape position, along with mean 
separation indicators, are presented in Fig. 3. Relative diff erences 
among cropping system and landscape position were consistent with 
the results and interpretation presented by Jung et al. (2008) based 
on soil samples collected in 2002 from the same plot area.

Similar relative diff erences in treatment means were seen 
among the diff erent cropping systems and landscape positions 
for all three analysis methods (Fig. 3). Th e additional variabil-
ity added by the VNIR calibration (Fig. 3), however, caused 
many diff erences that were signifi cant by laboratory analysis to 
not be signifi cant with VNIR estimation. Table 5 summarizes 
the number of signifi cant diff erences detected by each method. 
Data obtained by standard laboratory dry combustion methods 
provided the highest number of signifi cant diff erences (Table 5) 
among treatment means. Oven-dry soil VNIR estimates were 
less able to detect cropping system diff erences due to the scatter 
present in the calibration relationship (Fig. 2). Th is reduction in 
discrimination ability was greater for the deeper (5–15-cm) soil 
layer, where treatment diff erences were less. For example, there 
were no signifi cant diff erences in the 5- to 15-cm SOC by oven-
dry soil VNIR although standard laboratory analysis showed 10 
treatment pairs to be signifi cantly diff erent. In all but one case 
(5–15-cm SOC), mean separations among landscape positions 
were identical for laboratory analysis and oven-dry soil VNIR.

Field-moist sample VNIR analysis exhibited a further re-
duction in ability to detect signifi cant diff erences among crop-
ping systems and landscape positions (Table 5). An exception 
was in diff erentiating cropping system eff ects in the 0- to 5-cm 
soil layer, where oven-dry soil and fi eld-moist sample VNIR re-
sults were identical or very similar. To a large extent, the ability of 
the diff erent VNIR methods to detect diff erences was explained 
by the estimation statistics of RMSE and RPD. Methods and 
soil depths with higher RPD (Table 6) generally showed greater 
separation of treatments (Table 5). Values of RPD <1 indicated 
poor separation of treatments by VNIR compared with labora-
tory methods. With values of RPD >1.5 (Table 6), most of the 
treatments shown as signifi cantly diff erent by laboratory meth-
ods were shown as signifi cantly diff erent by VNIR (Table 5). 

Consistent with this fi nding, an RPD value of 1.4 to 1.5 has been 
used as the lower limit for estimates of good accuracy in past re-
search (Chang et al., 2001; Lee et al., 2009).

Th e results were consistent among methods. Diff erences sig-
nifi cant by fi eld-moist VNIR were also signifi cant by oven-dry soil 
VNIR. With one exception, diff erences signifi cant by oven-dry 
soil VNIR were also signifi cant by standard laboratory analysis. 
Th us, it appears that VNIR SOC and TN analysis could be used to 
assess management diff erences, albeit with a reduced ability to dis-
criminate among treatment means. Due to the smaller diff erences 
in subsoil samples, the technique would be more successful when 
applied to surface samples. Although others (Chang et al., 2005) 
have reported similar accuracy levels between VNIR analysis of 
moist and dry samples, the high-clay soils at the study site made 
it diffi  cult to achieve a consistent surface for DRS scanning of the 
moist samples and may have been a large factor in the poorer re-
sults with the fi eld-moist data set. While fi eld-moist sample VNIR 
analysis provided the same mean separation as standard laboratory 
data with large treatment diff erences (e.g., 0–5-cm SOC among 
grain cropping systems, Fig. 3), it was not able to discriminate 
smaller diff erences (e.g., 0–5-cm SOC among landscape positions) 
that were found with oven-dry soil VNIR analysis and standard 
laboratory data. Th us, the question of whether samples should be 
dried and sieved before VNIR analysis would depend on the ex-
pected diff erences among treatments.

It is worthwhile to note that these results were obtained using 
the same number of samples for VNIR analysis as for standard labo-
ratory analysis. Due to the higher effi  ciency of the VNIR analysis, 
however, spectral scans would probably be acquired at more sam-
pling points than would be used for laboratory analysis. Th us, al-
though the accuracy at individual sampling points might be lower 
as indicated by this study, the overall spatial variation in the proper-
ties of interest could be more accurately represented. Additionally, 
VNIR analysis can be completed at less cost and with less time than 
dry combustion laboratory analysis. Th is is particularly true if VNIR 
sample processing can be kept to a minimum. Waiser et al. (2007) 
and Morgan et al. (2009) reported that VNIR scanning of air-dried 
intact cores provided more accurate results than air-dried sieved 
samples. Perhaps intact core scanning, in either fi eld-moist or air-dry 
condition, would be able to both improve accuracy and minimize 
sample processing. Another approach would be in situ scanning as 

Table 5. Number of signifi cantly different cropping system 
and landscape position pairs for each analysis method: dry 
combustion laboratory analysis (Lab), visible–near-infrared 
(VNIR) analysis of oven-dried and sieved samples (Dry), and 
VNIR analysis of fi eld-moist samples (Moist). Maximum pos-
sible number of signifi cant differences is 15 for cropping sys-
tem and three for landscape position.

Parameter†
Cropping system Landscape position

Lab Dry Moist Lab Dry Moist

0–5-cm soil depth

SOC 13 10 10 2 2 0

TN 14 9 8 2 2 0

5–15-cm soil depth

SOC 10 0 0 2 1 2

TN 9 4 0 2 2 1

† SOC, soil organic C; TN, total N.

Table 6. Root mean square error (RMSE) and the ratio of the 
standard deviation to the RMSE (RPD) for soil organic C (SOC) 
and total N (TN) by soil depth for each visible–near-infrared 
(VNIR) analysis data set: oven-dried and sieved samples (Dry) 
and fi eld-moist samples (Moist).

Parameter
RMSE RPD

Dry Moist Dry Moist

——— g kg−1 ———

0–5-cm soil depth

SOC 3.02 3.19 1.61 1.53

TN 0.29 0.32 1.36 1.21

5–15-cm soil depth

SOC 1.56 2.17 0.98 0.70

TN 0.18 0.23 0.97 0.73
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described by Christy (2008) and Bricklemyer and Brown (2010). 
Although in situ scanning eliminates the need for sample collection, 
preparation, and analysis (except for calibration samples), this meth-
od has generally provided lower accuracy. For any particular experi-
ment estimating near-surface SOC and TN, the choice of a method 
would need to be based on several factors, including the number of 
samples, the required accuracy, and the available resources. Based on 
the results of this and other studies, VNIR estimation of SOC and 
TN would be an acceptable methodology in some cases.

CONCLUSIONS
Th is study investigated the ability of VNIR DRS to distin-

guish diff erences in claypan soil quality among cropping systems 
and landscape positions on the basis of topsoil SOC and TN. 
Soil samples at two depths (0–5 and 5–15 cm) were obtained 
from long-term research plots encompassing six contrasting 
management systems across a representative claypan-soil land-
scape. Additional soil samples were obtained from nearby loca-
tions to provide an independent VNIR DRS calibration data set. 
Diff use refl ectance spectra of both fi eld-moist and dried samples, 
across the 400- to 2500-nm spectral range, were obtained in the 
laboratory, and calibrations were established using PLS regres-
sion. Good results were obtained, with the accuracy of the VNIR 
estimates higher with oven-dry samples than with fi eld-moist 
samples. Both VNIR analyses were able to discriminate among 
treatments but not as well as standard dry combustion method-
ology, with the oven-dry-sample VNIR analysis being more sen-
sitive in detecting diff erences than the fi eld-moist sample analy-
sis. Th e results with VNIR were better in the surface layer, where 
diff erences among treatments were generally greater. Even with 
its lower accuracy, the effi  ciencies inherent in the VNIR method, 
particularly when applied to fi eld-moist soil, suggest that it de-
serves consideration as a tool for evaluating near-surface SOC 
and TN diff erences in fi eld experiments.
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