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Nitrogen management in cereal crops has been the 
subject of considerable research and debate for several 

decades. Inefficient N management practices have contributed 
to low (~30–40%) N use efficiency (NUE) estimates for cereal 
crops such as corn (Raun and Johnson, 1999; Cassman et 
al., 2002). Contributing factors to low NUE abound but can 
ultimately be summarized in three main points, as stated by 
Shanahan et al. (2008): (i) poor synchrony between soil N sup-
ply and crop demand; (ii) uniform application rates of fertilizer 
N to spatially variable landscapes; and (iii) failure to account 
for temporally variable influences on crop N needs. Poor 
synchronization between soil N supply and crop demand is the 
result of N application before crop establishment and failure to 
account for N mineralization, leaving inorganic N in the soil 
subject to denitrification, leaching, or volatilization. Previ-
ous studies have found that in-season N application resulted 
in higher NUE than preplant applied N (Welch et al., 1971; 
Randall et al., 2003a,b). Studies have also shown that optimal 
N rates vary spatially across a field (Mamo et al., 2003; Scharf 
et al., 2005; Shahandeh et al., 2005) and using tools to account 

for this variability could potentially increase NUE (Hong et 
al., 2007). Therefore, innovative N management strategies are 
needed to address the factors that cause relatively low NUE.

Soil-based methods to increase NUE have included the con-
cept of management zones (MZ). Management zones are defined 
as subregions of a field with relatively homogeneous attributes in 
landscape and soil conditions, resulting in similar yield-limiting 
factors or yield potential (Doerge, 1999). Implied is that these 
MZ would have similar input-use efficiencies. Delineating MZ 
has included mathematical assessment of quantitative data sets to 
determine groups or clusters of data that are most similar. Meth-
ods for performing this data clustering to create MZ have varied 
considerably, with no universal algorithm being widely accepted. 
As reviewed by Fridgen et al. (2004), methods include supervised 
clustering, unsupervised clustering, c-means (k-means), fuzzy 
c-means (fuzzy k-means), and others. Management Zone Analyst 
(MZA, USDA-ARS Cropping Systems and Water Quality 
Research Unit, Columbia, MO) is a software program developed 
using Microsoft Visual Basic (Microsoft Corp., Redmond, WA) 
that uses a fuzzy c-means algorithm. The advantage of MZA over 
other software programs is that it provides concurrent output for 
a range of cluster numbers, so the user can define the optimum 
number of MZ (Fridgen et al., 2004).

A variety of data types have been used to delineate MZ 
within fields. These have included, but are not limited to: soil 
survey maps (Franzen et al., 2002); modified soil survey maps 
(Carr et al., 1991); topography (Kravchenko and Bullock, 
2000); remote sensing and farmer experience (Fleming et al., 
2000); ECa (Fraisse et al., 2001; Kitchen et al., 2005); ECa, 
grain yield, or slope and texture (Ferguson et al., 2003); yield 
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maps (Flowers et al., 2005); soil color (Hornung et al., 2006); 
and soil brightness, elevation, and ECa (Schepers et al., 2004). 
Delineating fields into MZ has produced mixed results, charac-
terizing homogeneous production areas well in some years but 
not in others. For example, Schepers et al. (2004) found that 
MZ based on soil brightness, elevation, and ECa appropriately 
characterized spatial yield patterns in three out of five seasons. 
The spatial yield patterns changed significantly in the wettest 
and driest years, however, and did not correspond to the delin-
eated MZ. Due to temporal variability, they concluded that the 
static soil-based MZ concept alone would not be adequate for 
variable application of crop inputs like N fertilizers.

One plant-based method that has been used to increase 
NUE has involved the indirect measurement of crop N status 
with the SPAD chlorophyll meter (Konica Minolta Sensing, 
Ramsey, NJ). Varvel et al. (1997, 2007) found that “spoon-
feeding” N fertilizer based on leaf greenness measurements 
using a SPAD chlorophyll meter could be used to reduce N 
applications while maintaining near-optimum yields. Extend-
ing this tool and concept to whole-field management is prob-
lematic, however, because it is difficult to collect sufficient data 
using a hand-held device to manage large fields (Schepers et 
al., 1995). Ground-based active crop canopy sensors have been 
studied as a more practical alternative to the SPAD chlorophyll 
meter in large-scale assessments of in-season plant N status and 
to direct spatially variable N applications (Raun et al., 2002; 
Solari et al., 2008). Active canopy sensors generate modulated 
light in the visible (400–700-nm) and near-infrared (NIR, 
700–1000-nm) regions of the electromagnetic spectrum. Solari 
et al. (2008) found that active canopy sensors were strongly 
correlated to SPAD measurements and could be used to assess 
canopy N content and direct in-season N application. More 
recently, Solari et al. (2010) developed an algorithm to convert 
active sensor canopy reflectance measurements at two prese-
lected wavelengths into N application rates for corn. Using a 
sufficiency index (SI), a site-specific N application rate (Napp) 
was determined according to

= -app sensorN 317 0.97 SI  [1]

where SIsensor is the ratio of reflectance measurements from 
N-stressed to N-sufficient areas. From long-term wheat 
(Triticum aestivum L.) and corn experiments, Raun et al. 
(2010) determined yield potential to be independent of the 
crop N response and suggested that sensor-derived estimates 
of both should be used to calculate realistic in-season N rates. 
Dellinger et al. (2008) found the green normalized differ-
ence vegetation index (GNDVI) to be strongly related to the 
economically optimum N rate (EONR) and concluded that 
GNDVI determined via canopy sensing could potentially be 
useful to guide sidedress N recommendations. Schmidt et al. 
(2009) compared GNDVI obtained by canopy sensing with 
SPAD measurements, the presidedress NO3 test, and late-
season stalk NO3 test and found that GNDVI was as good 
an indicator of the EONR as the more conventional tests. 
Schmidt et al. (2009) further suggested that the ability of 
canopy sensors to capture spatial and temporal variability in N 
need makes this technology an attractive alternative to improve 
NUE in corn production.

Although these results show promise for using canopy sensors 
to guide in-season N management, these methods only incorpo-
rate crop-based measurements. Active sensor soil measurements 
could potentially help to develop or fine-tune MZ delinea-
tion and be used in conjunction with on-the-go crop sensing. 
Ground-based proximal soil sensing has been shown to predict 
soil properties correlated with crop productivity (Johnson et 
al., 2001; Roberts et al., 2011). Schepers et al. (2004), as well 
as others (Holland and Schepers, 2010; Shanahan et al., 2008; 
Solari et al., 2008), suggested that the combination of MZ and 
in-season crop-canopy sensing could produce a more efficient 
method to optimize N application rates. Shanahan et al. (2008) 
outlined an integrated soil and crop sensing approach by which 
soil-based MZ could be used to help adjust sensor-guided N 
rates. Similarly, Holland and Schepers (2010) provided a sensor-
based N application algorithm that incorporated a geospatial 
MZ scalar to adjust N recommendations for such things as soil 
sample information. Although previous work suggested the use 
of an N management approach integrating soil-based MZ and 
canopy sensing measurements, few if any have explored how 
this could be done. Therefore, this study was conducted to assess 
these reflectance by MZ concepts for improving N manage-
ment on crop production fields. Our specific objectives were: 
(i) to identify soil variables related to in-season crop canopy 
reflectance and yield and to use these variables to delineate MZ 
for N fertilizer management; and (ii) to compare the corn yield 
response to different N fertilizer treatments for different MZ.

MATERIALS AND METHODS
Research Fields

This study was conducted on six producer fields under sprin-
kler-irrigated conditions during the 2007 (Fields 1, 2, and 3) and 
2008 (Fields 4, 5, and 6) growing seasons (Table 1). All six fields 
were located in central Nebraska within 100 km of each other 
and each field included between two and four soil series. Fields 
1, 3, and 6 were relatively flat (<3 m of relief), while Fields 2, 4, 
and 5 had substantial changes in elevation (~8–10 m). The fields 
were grouped into four broad classifications based on soil texture 
and topography: silt loam fields with level topography (Fields 3 
and 6), silt loam fields with rolling topography and eroded slopes 
(Fields 2 and 5), sandy fields with level topography (Field 1), and 
sandy fields with rolling topography and eroded slopes (Field 4). 
Collectively, the selected fields provided an array of topographic 
and soil conditions and exhibited a range of within-field spatial 
variability to address the study objectives.

Experimental Treatments

Tillage practices and crop rotations implemented by the grower 
at each field were typical for central Nebraska corn production, 
with hybrid selection, planting date, seeding rate, and other field 
operations managed by individual producers (Table 2). Nitrogen 
treatments for this study consisted of eight rates (0–274 kg N ha–1 
in 39 kg ha–1 increments) arranged in a randomized complete 
block design. Individual plots consisted of eight rows (0.76- or 
0.91-m row spacing; Table 2) of 15.2-m length. Blocks were located 
end-to-end in the field, with the number of blocks per field varying 
from six to 16 (Table 2) depending on individual field lengths. 
These N treatments were applied after seeding as either 28 or 32% 
urea-ammonium nitrate solution.
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Spatial Soil Measurements
Spatial soil measurements collected for each field included 

ECa, soil reflectance, relative elevation, and slope. All spatial data 
were georeferenced with a differentially corrected global posi-
tioning system (DGPS) receiver. Spatial coordinates for all data 
were converted using Universal Transverse Mercator (UTM) 
Zone 14N (NAD-83 Datum) projection. Spatial data analysis 
was conducted using ArcMap 9.2 (ESRI, Redlands, CA).

To characterize the field variation in soil chemical proper-
ties, grid soil samples were collected from each field before corn 
planting. In the 2007 fields (Fields 1, 2, and 3), grid samples 
were collected on a 0.7-ha-scale offset grid, and in 2008 fields 
(Fields 4, 5, and 6), on a 0.4-ha-scale offset grid. Soil samples 
were collected from the 0- to 20-cm depth using a manual 
soil probe and analyzed for pH, Bray-P, NO3

––N, NH4
+–N, 

and organic matter (OM). Additionally, a deep core sample 
(0–91 cm) was collected from each grid location, divided into 
30-cm increments, and analyzed for NO3

––N and NH4
+–N.

Soil ECa was mapped for each field before planting using 
a Geonics EM-38 instrument (Geonics Ltd., Mississauga, 
ON, Canada). The instrument provides a measure of ECa at 
integrated soil depths of 0 to 0.75 m (horizontal dipole mode, 
ECsh) and 0 to 1.5 m (vertical dipole mode, ECdp). The EM-38 
was calibrated according to the manufacturer’s specifications 
before data collection in each field. To collect measurements, 

the EM-38 was fastened into a plastic and fiberglass cart 
pulled behind an all-terrain vehicle (ATV). A Trimble AgGPS 
114 receiver (Trimble Navigation Ltd., Sunnyvale, CA) was 
mounted next to the sensor to log geographic coordinates as 
the ATV made parallel passes ~15 m apart through each field.

Soil optical reflectance was assessed at the time of planting 
using a Holland Scientific ACS-210 Crop Circle sensor (Hol-
land Scientific, Lincoln, NE). This sensor generates modulated 
light in the visible and NIR regions of the electromagnetic 
spectrum and measures reflectance with visible (590 ± 5.5 nm, 
VISsoil) and NIR detectors (880 ± 10 nm, NIRsoil). To acquire 
sensor readings, the sensor and datalogger were mounted on 
the front of an ATV ~0.6 m above the soil surface. The sensor 
was positioned over the soil surface in the nadir view, produc-
ing a footprint of approximately 8 by 40 cm, with the long 
dimension of this footprint oriented parallel to the direction 
of travel. The sensor footprint was positioned over the planted 
row to minimize crop residue in the sensor field-of-view as 
the ATV followed behind the planter. The distance between 
consecutive ATV passes across the field was equal to the 
planter width (Table 2). A Garmin 18 (Garmin International, 
Olathe, KS) global positioning system (GPS) receiver with 
an update rate of 5 Hz was mounted on the ATV next to the 
sensor. Sensor readings were collected at 10 Hz while the ATV 
traveled ~10 km h–1, resulting in ~0.56 m between consecutive 

Table 1. Soil series and soil classification for 2007 and 2008 fields.

Field Soil series Soil classification
1 Ipage loamy fine sand mixed, mesic Oxyaquic Ustipsamment, 0–3% slope

Thurman loamy fine sand sandy, mixed, mesic Udorthentic Haplustoll, 0–2% slope
Thurman loamy fine sand sandy, mixed, mesic Udorthentic Haplustoll, 2–6% slope

Novina sandy loam coarse-loamy, mixed, superactive, mesic Fluvaquentic Haplustoll, 0–2% slope
2 Crete silt loam fine, smectitic, mesic Pachic Udertic Argiustoll, 0–1% slope

Hastings silt loam fine, smectitic, mesic Udic Argiustoll, 0–1% slope
Hastings silty clay loam fine, smectitic, mesic Udic Argiustoll, 3–7% slope, eroded
Hastings silty clay loam fine, smectitic, mesic Udic Argiustoll, 7–11% slope, eroded

3 Hall silt loam fine-silty, mixed, superactive, mesic Pachic Argiustoll, 0–1% slope
Hord silt loam fine-silty, mixed, superactive, mesic Cumulic Haplustoll, 0–1% slope

4 Thurman loamy fine sand sandy, mixed, mesic Udorthentic Haplustoll, 2–6% slope
Valentine fine sand mixed, mesic Typic Ustipsamment, 9–24% slope

5 Hastings silt loam fine, smectitic, mesic Udic Argiustoll, 0–1% slope
Hastings silty clay loam fine, smectitic, mesic Udic Argiustoll, 3–7% slope, eroded
Hastings silty clay loam fine, smectitic, mesic Udic Argiustoll, 7–11% slope, eroded

6 Detroit silt loam fine, smectitic, mesic Pachic Argiustoll, 0–1% slope
Wood River silt loam fine, smectitic, mesic Typic Natrustoll, 1–3% slope

Table 2. Producer management practices for 2007 and 2008 fields.
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seeds ha–1 m m kg ha–1 no.

1 NT soybean 20 Apr. 2007 Pioneer 33N08 77,805 0.76 9.1 25 May 2007 28–0–0–5 149‡ 16
2 ST corn 11 May 2007 Pioneer 34R67 79,040 0.76 18.2 5 June 2007 28–0–0 258 16
3 RT corn 5 May 2007 Pioneer 34A16 79,040 0.91 7.3 7 June 2007 28–0–0 160§ 8
4 NT soybean 21 Apr. 2008 Pioneer 34R67 79,040 0.76 9.1 16 May 2008 28–0–0–5 224 6
5 ST popcorn 1 May 2008 Heartland Hybrids NG6783 79,040 0.76 9.1 20 May 2008 28–0–0 258 8
6 CT corn 14 May 2008 Pioneer 33D47 79,040 0.91 7.3 11 June 2008 82–0–0 258 8
† NT, no-till; ST, strip tillage; RT, ridge tillage; CT, conventional disk tillage.
‡ Does not include 50 kg ha–1 soybean credit or 27 kg ha–1 NO3 water credit.
§ Does not include 47 kg ha–1 NO3 water credit.
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data points. Linear interpolation was applied to assign unique 
geographic coordinates to each recorded measurement.

Elevation data from each field were also recorded at the 
same time as the collection of soil optical reflectance readings. 
The Garmin 18 receiver had differential correction capability 
(DGPS using a wide-area augmentation system) with horizon-
tal accuracy usually at <3 m. General trends in elevation were 
measured within each field (Schmidt et al., 2003). Relative 
elevation (Elevrel) was calculated for each field by subtracting 
the minimum elevation within the field from all elevation data 
points. Slope was calculated for each field from elevation data 
using the spatial analysis tool in ArcMap 9.2.

For every small plot, inverse-distance weighting interpo-
lation was conducted to provide values for each data layer 
(ECdp, ECsh, VISsoil, NIRsoil, Elevrel, and slope) at a spatial 
resolution of 0.5 m. To reduce the border effect between plot 
N applications, data from each soil layer were extracted from 
a 2-m-radius area of interest from the center of each plot using 
zonal statistics in ArcMap 9.2. The 2-m radius for each plot 
was inspected and adjusted slightly if any anomalies could be 
identified (e.g., poor crop stand or pivot tracks).

Crop Sensing and Yield
In-Season Crop Canopy Reflectance

When the crop reached the V10 to V14 growth stage, canopy 
reflectance measurements were obtained from each plot with the 
ACS-210 Crop Circle sensor. Two (2007) or four (2008) sensors 
were mounted in the front of an eight-row high-clearance vehicle 
approximately 0.8 to 1.5 m above the crop canopy. In 2007, the 
sensors were positioned over Rows 2 and 7 in the nadir view. In 
2008, one sensor per row was positioned over Rows 3 to 6 in the 
nadir view. Based on positioning, each sensor produced a foot-
print of approximately 0.1 by 0.5 m, with the long dimension of 
this footprint oriented perpendicular to the row direction. This 
sensor position was determined by Solari (2006) to be optimal 
for assessing the canopy N status. Due to inclement weather, 
in-season sensing could not be collected from Field 6 until 1 to 
2 d after tasseling. To minimize the effect of the tassels, sensors 
were mounted slightly off row center for this field. Before field 
operations, each sensor was calibrated by the manufacturer using 
a proprietary universal 20% reflectance panel, with the sensor 
placed in the nadir position above the panel.

A Garmin 18 GPS receiver with an update rate of 5 Hz was 
mounted in the center on top of the vehicle cab and 3.5 m 
behind the sensor boom. Canopy reflectance measurements 
were collected at 10 Hz while the vehicle traveled at a ground 
speed of ~8 km h–1, resulting in raw data points ~0.22 m 
apart. Linear interpolation was applied to assign unique 
geographic coordinates to each recorded measurement. Plot 
alleyway positions were used as an additional tool to check the 
position of data points and make adjustments as needed.

To distinguish canopy optical reflectance from soil opti-
cal reflectance, plant readings are referred to as VIS590 and 
NIR880. Sensor reflectance in the VIS590 and NIR880 wave-
lengths were used to calculate chlorophyll index (CI590) values 
according to Gitelson et al. (2003b, 2005) using

= -880
590

590

NIR
CI 1

VIS  [2]

Sensor-based CI590 values were used in lieu of the normalized dif-
ference vegetation index (NDVI) because CI590 has been found to 
be more sensitive in assessing canopy N status than NDVI (Solari 
et al., 2008). Previous research has shown NDVI to have a curvi-
linear relationship with the canopy chlorophyll content, causing 
NDVI to saturate at high canopy densities, while CI590 does not 
saturate (Vina and Gitelson, 2005). Sensor readings were filtered 
to exclude soil reflectance (i.e., a poor crop stand) from the crop 
data set. This was done by assuming that all data points that fell 
below the average soil chlorophyll index (CIsoil) + 2σ calculated 
from the soil color data set were soil measurements to be removed. 
The remaining plant measurements for each plot area of interest 
were extracted using zonal statistics in ArcMap 9.2.

Grain Yield
At physiological maturity, 3 m of the middle two rows of 

each plot were hand harvested, and the grain was oven dried, 
weighed, and shelled (Schmidt et al., 2002). Grain moisture 
was measured using a DICKEY-john GAC II moisture tester 
(DICKEY-john Corp., Auburn, IL) and adjusted to a standard 
moisture of 155 g kg–1. Yield response to N rate models were fit 
to each treatment block and used to identify potential outli-
ers in the data set that required further inspection (data not 
shown). Based on previous research by Cerrato and Blackmer 
(1990) and Scharf et al. (2005), a quadratic-plateau function 
was used to describe the corn yield response to N rate for data 
of each treatment block within each field using Proc NLIN in 
SAS 9.1 (SAS Institute, Cary, NC). Questionable N treatment 
plots were excluded from further analysis when field conditions 
compromised the crop (e.g., pivot tracks or drainage ways). 
Parameters (a, b, and c) from the quadratic model

( ) ( )= + +2Yield N rate N ratea b c  [3]

were evaluated similarly to the process used by Scharf et al. 
(2005). When the linear (b) coefficient of the quadratic-plateau 
model was negative (i.e., yield decreased with the first incre-
ment of N fertilizer), yield was modeled as unresponsive to N 
(i.e., a flat line equal to the average yield of all plots within the 
block). When the quadratic (a) coefficient of the best-fitting 
quadratic model was positive (i.e., the response curve became 
steeper at higher N rates), a linear function was fit to the data. 
When the quadratic-plateau model failed to converge or was 
nonsignificant (α = 0.05), the yield was modeled as a linear 
regression function when P < 0.05; otherwise yield was consid-
ered unresponsive to N application.

Data Analysis and Management Zone Delineation

Pearson correlation analysis was conducted with all fields 
combined to explore the relationships among the measured 
soil, topography, and crop variables. The crop variables used 
were yield, relative yield (yieldrel), change in yield with N 
fertilization (Δyield), CI590, and partial factor productivity 
(PFP, kg grain kg–1 N applied). Yieldrel was calculated within 
each block by dividing each yield by the yield obtained from 
the plot receiving the highest N rate (274 kg ha–1); Δyield was 
calculated within each block by subtracting the check plot (no 
N applied) yield from yield when N was applied. The PFP was 
used in place of other calculations of NUE because it provides 
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an integrative index that quantifies the total economic output 
relative to the utilization of all nutrient resources in the system, 
including indigenous soil nutrients and nutrients from applied 
inputs (Cassman et al., 1996, 1998).

The relationships among check plot yields, CI590, and the differ-
ent soil variables were explored. This approach was taken to deter-
mine the associations between variation in soil and topography 
attributes and variation in crop response variables. Also, previous 
research related to canopy sensing found check plot yields useful 
in assessing the crop response to N fertilizer (Mullen et al., 2003). 
Three types of variables were explored: soil reflectance (VISsoil and 
NIRsoil), soil ECa (ECdp and ECsh), and landscape topography 
(Elevrel and slope). By field, the soil variable within each of these 
types giving both significant (P ≤ 0.05) and the highest correlation 
to both check plot yields and CI590 was used as the input variables 
for clustering in the MZA software (Fridgen et al., 2004). Once 
the soil variables for clustering were identified, the area of interest 
from each plot within each field was input into MZA for classifica-
tion. Additionally, values for the selected data layer(s) from areas 
adjacent to the N response plots were also included to increase the 
spatial area for clustering within each field to develop MZ. The 
MZA default values were used for both the measure of similar-
ity (Euclidean distance) and the fuzziness exponent (1.30) when 
clustering involved one data layer. The Mahalanobis option for the 
measure of similarity and the default fuzziness exponent (1.30) 
were used when two or more data layers were input for clustering 
(Fridgen et al., 2004). Two performance indices were calculated by 
MZA to determine the appropriate number of zones within each 
field. The normalized classification entropy (NCE) determined 
the amount of disorganization created by dividing the data into 
classes (Lark and Stafford, 1997). The fuzziness performance 
index (FPI) is a measure of membership sharing (fuzziness) among 
classes (Odeh et al., 1992). The optimum number of zones was 
determined when both NCE and FPI were minimized, represent-
ing the least membership sharing (FPI) or the greatest amount of 
organization (NCE) from the clustering process (Fridgen et al., 
2004). When NCE and FPI class tests were not alike, the index 
giving the fewest number of classes was selected.

Management Zone Validation

Zones were evaluated to determine whether classification based 
on soil variables was related to differences in in-season CI590 and 
yield response to N rate. For soil-based MZ to be integrated with 
in-season canopy sensors, zones would need to identify areas 
within fields having unique crop N needs (CI590) and response to 
N application (yield). Also, because canopy reflectance (expressed 
as CI590) and yield response to N rate are inputs to in-season active 
canopy sensor algorithms (Solari et al., 2010), these two variables 
were used to test zonal differences within each field.

To evaluate zone delineation using the CI590 response to 
N rate, treatment blocks within each field were disregarded 
and plots were grouped according to N rate within each zone. 
Although the number of plots for each N rate varied within 
each zone, plot CI590 values were averaged for each N rate 
within each zone. This resulted in eight total data points 
within a zone, to which a quadratic-plateau model was fit using 
the same procedures outlined above for yield data.

Yield response to N rate by MZ was also examined using 
the same procedures. Plots within each zone were grouped 

according to N rates, and plot yields were averaged for each N 
rate within a zone. This also resulted in eight total yield data 
points within a zone, to which a quadratic-plateau model was 
fit. Statistical differences between CI590 response models and 
yield response models between the zones within each field were 
tested by combining the data for the two zones and refitting a 
quadratic-plateau model to each combined data set. With the 
resulting models for Zone 1, Zone 2, and the combined model, 
an F test was performed to determine whether the models for 
each zone were statistically different:

( )
( ) ( )+

- -
=

+ +e1 e2

T 1 2
3,df df

1 2 e1 e2

SSE SSE SSE 3
SSE SSE df df

F  [4]

where SSET, SSE1, and SSE2 are the sum of squares from the 
combined, Zone 1, and Zone 2 models, respectively, and dfe1 
and dfe2 are the degrees of freedom for the Zone 1 and 2 mod-
els, respectively.

Parameters a and b from the quadratic-plateau models were used 
to calculate the EONR for CI590 and yield response to N rate for 
each zone within a field. The EONR was determined based on 
a fertilizer price/grain price ratio of 7, where the corn grain price 
was US$0.158 kg–1 (US$4 bu–1) and the N fertilizer cost was 
US$1.10 kg–1 (US$0.50 lb–1). The EONR was calculated as

( )US$1.10 US$0.58
EONR

2

b
a

-
=  [5]

where b and a are the linear and quadratic coefficients of the 
quadratic-plateau response function, and b > 0 and a < 0 (Scharf 
et al., 2005). The EONR was constrained to never exceed 274 kg 
N ha–1 (the highest N application rate). Differences between 
zonal EONRs were evaluated using the F test above (Eq. [4]).

RESULTS AND DISCUSSION
Selection of Soil Variables  

for Creating Management Zones
First, the general relationships between crop and soil or topog-

raphy variables were tested by combining measurements across all 
fields (Table 3). Soil and topography variables were significantly 
correlated to yield, Δyield, and CI590 but generally with low cor-
relation. Given this overall low correlation of the combined field 
measurements, we concluded that the relationship between crop 
responses and soil properties may be specific for each field and 
should not be used to represent all fields when creating MZ.

The relationships between soil and crop variables were next 
examined on a field-by-field basis (CI590 and yield) when no N fer-
tilizer was applied (Table 4). We chose these two variables because 
they showed the greatest promise among the crop variables from 
the first analysis (Table 3), and they are integral components of a 
canopy sensor algorithm (Solari et al., 2010). Also, for soil-based 
MZ to be used in conjunction with in-season active sensor-based 
N management, zones should identify areas within fields having 
unique crop N needs (CI590) and response to N (yield). A signifi-
cant correlation for at least one soil variable was found in four of 
the six fields. The lack of any significant correlations between soil–
topography and crop variables in Fields 3 and 6 could be attributed 
to the relative uniformity and lack of N response within these 
fields (data not shown). It was concluded that creating MZ for 
these two fields was unwarranted and that uniform N application 
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was the best N management strategy. Therefore, these two fields 
were excluded from further MZ evaluation.

From each of the three types of measurements (soil reflec-
tance, soil ECa, and topography), the variable with the highest 
significant correlation to CI590 and yield was identified for the 
four remaining fields. Variables identified using this selection 
criterion are highlighted in Table 4. Generally, optical reflec-
tance of the soil gave the strongest correlation with CI590 and 
yield in the sandy fields (Fields 1 and 4), while ECsh showed the 
strongest correlation with CI590 and yield in the silt loam fields 
with eroded slopes (Fields 2 and 5). The range of ECa was the 
smallest in Fields 1 and 4 (data not shown), contributing to the 
low correlation of ECa with CI590 and yield for these sandy soils.

The strong negative correlation measured for Elevrel in Field 4 
and the strong positive correlation in Field 2 was related to 
the soil texture and OM content of each of these fields (sandy 
and silt loam soils, respectively). The higher areas of Field 4 are 

wind-eroded areas of the field (Pollock et al., 1981). These upland 
eroded areas had lower soil OM than other areas of the field, 
which resulted in reduced in-season crop reflectance readings and 
yield compared with the higher soil OM of lowland field areas, 
similar to that observed by Schepers et al. (2004). In Field 2, 
the opposite relationship was observed. Higher positions in the 
landscape for this field corresponded to higher OM and more 
productive soils, while lower areas in the landscape corresponded 
to eroded drainageways. These landscape positions translated 
to optimal growing conditions in higher elevation areas of the 
field, resulting in low in-season crop stress and higher yields. We 
suspected that the drainageways potentially had higher crop 
stress caused by denitrification. Topographic data were useful 
in explaining yield variability, but, as previously mentioned by 
Kravchenko and Bullock (2000), crop response to topography 
can vary substantially from field to field and year to year.

Given the criteria for choosing which variables to use for 
MZ development (in bold in Table 4), no consistent trend was 
found among the four fields in how many and which variables 
to use (from one to three). Additional similar field studies 
are needed to establish a consistent set of soil and topography 
variable(s) within a soil type for MZ delineation.

Management Zone Delineation

Selected soil variables from Table 4 were included in MZ 
delineation using MZA. Based on FPI, two MZ were found to 
be the optimal number for three out of the four fields (data not 
shown). For Field 5, FPI indicated four potential zones. Based 
on NCE, however, only two MZ were needed for all four fields. 
Therefore, subsequent analyses used only two MZ for each of 
the four fields. Table 5 provides the average MZ value for data 
layers used in MZA clustering for each field.

As shown in an example zone classification map for Field 1 
(Fig. 1), in each of the four fields, Zone 1 generally consisted of 
darker, more productive soils, while Zone 2 consisted of lighter, 
less productive areas. In the sandy fields (Fields 1 and 4), the 
darker areas of Zone 1 corresponded to slight depressions in 

Table 3. Pearson correlation coefficients of soil variables ob-
tained from visible and near-infrared bare soil reflectance 
(VISsoil and NIRsoil, respectively), soil apparent electrical 
conductivity in vertical and horizontal dipole modes (ECdp 
and ECsh, respectively), and landscape data (relative elevation 
[Elevrel] and slope) to factors related to yield response to N ap-
plication (yield, relative yield [yieldrel], change in yield with N 
fertilization [Δyield], chlorophyll index [CI590]†, and partial fac-
tor productivity [PFP, kg grain kg–1 N applied]) for N rate small 
plots for six site-years of corn in central Nebraska (n = 386).

Soil variable Yield Yieldrel ΔYield CI590 PFP
VISsoil 0.16** 0.00 –0.04 –0.33*** –0.04
NIRsoil 0.23*** 0.00 –0.09 –0.28*** –0.02
ECdp 0.35*** –0.07 –0.29*** 0.18*** 0.13*
ECsh 0.18*** –0.08 –0.20*** 0.12* 0.10
Elevrel 0.30*** –0.05 –0.21*** 0.08 0.12*
Slope 0.39*** 0.00 –0.28*** 0.36*** 0.08
* Statistically significant at P < 0.05.
** Statistically significant at P < 0.01.
*** Statistically significant at P < 0.001.
† CI590 = (NIR880/VIS590) – 1, where NIR is near infrared and VIS is visible light 
reflectance.

Table 4. Pearson correlation coefficients of soil variables to check plot yield and in-season chlorophyll index (CI590) for each of the 
six site-years. Bold data indicate selected variables used in management zone delineation.

 
Field

Crop 
parameter

 
n

Soil optical reflectance† Apparent electrical conductivity‡ Landscape
VISsoil NIRsoil ECdp ECsh Elevrel§ Slope

1 CI590 27 –0.66*** -0.67*** 0.51** 0.47* –0.44* –0.28
yield 27 –0.31 -0.32¶ 0.06 0.08 0.02 –0.24

2 CI590 29 -0.77*** –0.74*** –0.70*** -0.76*** 0.75*** –0.26
yield 29 -0.63*** –0.63*** –0.74*** -0.74*** 0.65*** –0.52**

3 CI590 15 0.36 0.37 –0.21 –0.10 –0.49¶ 0.49¶
yield 15 0.42 0.43 –0.28 –0.14 –0.26 0.26

4 CI590 12 -0.73** –0.72** –0.04 0.14 -0.76** –0.42
yield 12 -0.80** –0.78** –0.28 –0.11 -0.65* –0.31

5 CI590 14 –0.54* –0.58* –0.66* -0.70** 0.35 –0.01
yield 14 –0.25 –0.29 –0.75** -0.70** 0.04 0.32

6 CI590 54 0.05 0.06 –0.13 –0.23 0.27* 0.37**
yield 54 0.54*** 0.67*** –0.10 –0.33* –0.09 0.17

* Statistically significant at P < 0.05.
** Statistically significant at P < 0.01.
*** Statistically significant at P < 0.001.
† VISsoil and NIRsoil, visible and near-infrared bare soil reflectance, respectively.
‡ ECdp and ECsh, vertical and horizontal dipole apparent electrical conductivity, respectively.
§ Elevrel, relative elevation.
¶ Statistically significant at P < 0.10.
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the landscape (Fig. 1). These lower areas had higher soil OM 
content, higher NO3–N (Table 6, MZ 1), and acted as receiving 
areas for water and therefore had corresponding higher yields, as 
supported by previous yield maps (not shown). The darker Zone 
1 areas of Fields 2 and 5 corresponded to productive upland 
positions in the landscape. Zone 2 areas of Fields 2 and 5 were 
associated with eroded slopes and drainageways where condi-
tions were less suitable for crop growth (Table 6), also supported 
by previous yield maps. For these two fields, the average soil P 
concentrations of Zone 2 were approximately double those of 
Zone 1. The higher soil P in Zone 2 was attributed to P fertiliza-
tion rates exceeding crop P removal. These results show that soil 
data obtained from ground-based proximal sensors appropriately 
delineated MZ of unique soil chemical properties.

Nitrogen Management Zone Validation
Chlorophyll Index

For soil-based MZ to be used in conjunction with in-season 
active sensor-based N management, zones should identify areas 
within fields with a unique crop response to in-season N applica-
tion. First, CI590 values were examined because they have been 
shown to be a good measure of the in-season crop N status (Solari 
et al., 2008). Validation of zones was evaluated by comparing the 
CI590 of the two MZ of each field as a function of N rate. Within 
each field, CI590 quadratic-plateau response models for the two 
zones were statistically different (P < 0.05; Fig. 2), with CI590 
estimates for Zone 1 being consistently higher than for Zone 2. 
Higher estimates represent plants with either greater biomass 
or greater chlorophyll content (Gitelson et al., 2003a, 2005). 
Additionally, in three of the four fields, the EONR was higher for 
Zone 1 than Zone 2 areas of the field, with the greatest difference 
in EONR occurring in Field 4 (Fig. 2). These results suggest that 
Zone 1 was able to generate more biomass and provide more N to 
the crop than Zone 2 at the time of sensing.

While there are potentially many ways to create MZ for N 
management, the procedure used here identified appropriate soil 
variables for creating zones with unique in-season variability in 
CI590 (i.e., identified different areas of N stress within a field). 
These results were similar to those of Inman et al. (2008), who 
found that soil-based MZ appropriately characterized different 
areas of in-season N stress at early corn growth (V8) in four of 
six site-years. Significant differences between Inman et al. (2008) 
and this research, however, were the vegetation index selected to 
quantify in-season N stress (NDVI vs. CI590) and the corn growth 
stage of in-season sensing (V8 vs. V10–V14). Previous studies 
have shown that NDVI is sensitive to crop N stress when the leaf 
area index (LAI) is relatively low but tends to saturate with high 
LAI (Gitelson et al., 2003b, 2005; Shanahan et al., 2008; Solari 
et al., 2008). These results show that soil and topography variables 
appropriately classified different areas of in-season crop N stress at 
the V10 to V14 growth stages when in-season N application would 
probably occur for Nebraska growing conditions.

Table 5. Average values for data layer(s) used in clustering by 
Management Zone Analyst for Zones 1 and 2 within each field. 
An F test was used to test statistical difference between man-
agement zones (MZ).

Field MZ n Data layer used in clustering†
VISsoil NIRsoil ECsh Elevrel

1 1 878 1.37***
2 487 1.01***

2 1 1120 0.67*** 50.1*** 6.08***
2 254 0.86*** 62.2*** 2.98***

4 1 505 0.76*** 3.06***
2 683 0.84*** 7.92***

5 1 1018 42.6***
2 326 53.8***

*** Statistically significant at P < 0.001.
† VISsoil and NIRsoil, visible and near-infrared bare soil reflectance, respectively; 
ECsh, horizontal dipole apparent electrical conductivity; Elevrel, relative elevation.

Fig. 1. Zones 1 and 2 for Field 1 resulting from clustering by Management Zone Analyst using near-infrared bare soil reflectance 
(NIRsoil). Zone delineation points, N application plot locations, and soil series are overlaid on a gray-scale bare soil image.
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Grain Yield

The grain yield response to N rate was significantly different 
between Zones 1 and 2 in Fields 2 and 5 but not in Field 1 (P < 
0.05; Fig. 3). The maximum yield difference between zones was 
greatest in Field 5 (2.89 Mg ha–1) and smallest in Field 1 (0.24 Mg 
ha–1). The lack of a statistically significant quadratic-plateau model 
for Zone 2 of Field 4 was not surprising because Zone 2 corre-
sponded to wind-eroded areas of the field in the soil survey. These 
soils have eroded topsoil, lower native soil fertility, and substantial 
variability in a small spatial area. Therefore, these areas of the field 
have a lower yield potential than the Zone 1 areas. Also, in-season 
sensing (CI590) in Field 4 had indicated a substantially lower 
EONR (44 kg ha–1) in Zone 2 than Zone 1 areas (103 kg ha–1) 
(Fig. 2); however, smaller experimental block sizes could possibly 
have better captured the small-scale variability found in Zone 
2. In Fields 2 and 5, Zone 2 consisted of soils on eroded slopes 
where the yield potential was lower than in uneroded areas of the 
field (Fig. 3). Zonal EONRs of these two fields were different, yet 
dissimilar between the 2 yr. The Zone 2 EONR for Field 2 was 76 
kg ha–1 more than that of Zone 1. For Field 5, Zone 2 was 112 kg 
ha–1 less than Zone 1. Because these two fields were similar in soil 
and landscape properties, we cannot readily explain the dramatic 
change in EONR for Zone 1 between 2007 and 2008. In general, 
MZ evaluation based on yield found that more N was needed 
to reach the EONR in Zone 2 than Zone 1, which supports the 
idea that Zone 1 will provide more N from the soil, similar to the 
findings from CI590. Also, the substantially lower zonal EONR 
predicted using CI590 compared with the EONR predicted using 
yield suggests that crop-based algorithms dependent on CI590 may 
underapply the required N.

These yield results also indicate that soil-based MZ were 
able to appropriately classify unique zones characterizing yield 
response to N rate within fields having silt loam soils and 
eroded slopes. When used in fields with these soil conditions, 
integrating zonal yield response models or adding a zonal 
scalar with an in-season sensor-based system could potentially 
improve the efficiency of sensor-based algorithms, as was pro-
posed by Holland and Schepers (2010).

Economic Considerations
An economic analysis was performed for the four fields, 

showing potential benefit for using soil-based MZ. The study 

areas in Fields 1, 2, 4, and 5 were 11.5, 11.6, 10.1, and 11.3 ha, 
respectively. Using current producer N application rates for each 
of these fields (Table 2), the areas within each field designated 
as Zones 1 and 2 were calculated, and the potential savings or 
loss resulting from applying different N rates to each zone were 
compared with current producer N application rates. These 
assumptions resulted in savings for total N application in our 
study area of –US$33 ha–1, US$145 ha–1, US$0, and US$32 
ha–1 for Fields 1, 2, 4, and 5, respectively. Extrapolated to a 
typical Nebraska pivot area of ~57 ha, the savings or loss would 
have been –US$1881, US$8261, US$0, and US$1824 for these 
fields. Based on the nonsignificant difference between zonal 
yield responses to N rate models in Field 1, it was not surprising 
that N application according to MZ resulted in an economic loss 
for this field. Similarly, the EONR required for the wind-eroded 
areas of Field 4 (Zone 2, 274 kg ha–1) resulted in no economic 
benefit for N rates based on MZ compared with uniform N 
application. The substantial N savings measured in Fields 2 and 
5, however,  suggests that there is a potential economic benefit to 
N application according to soil-based MZ in fields with silt loam 
soils and eroded slopes. These results suggest that the benefit 
of site-specific management in these fields could be increased 
further through the integration of active canopy sensor-based 
variable-rate N application adjusted to account for within-field 
MZ, as suggested by Holland and Schepers (2010), Shanahan 
et al. (2008), and Scharf et al. (2005). Our results indicate that 
crop-based algorithms would need to be modified to match 
the unique soil and landscape characteristics of each MZ. For 
example, the algorithm given by Solari et al. (2010) is based on 
maximum yield being attained at ~180 kg N ha–1 in season. 
Our results showed that the N rate at maximum yield differed 
between zones by as much as 114 kg ha–1. As an initial algorithm 
modification, the N rate at which maximum yield is attained 
could potentially be adjusted based on the zonal yield response to 
N rate measured under different soil conditions. Such algorithm 
modifications would help increase the efficiency of in-season 
N application compared with uniform N rates. Future studies 
should include the validation of yield response to in-season N 
treatment under different soil- and topography-based conditions, 
which can be delineated using the MZ approach.

Table 6. Soil chemical properties for management zones (MZ) within each field. Soil samples were collected from the 0- to 20-cm 
depth. The profile N availability index was calculated as the average soil N (NO3

––N + NH4
+–N) for the top three soil depths (0–91 

cm in 30-cm increments). An F test was used to test statistical difference between MZ. Statistically different MZ are indicated with 
the appropriate significance level indicators.

Field MZ n pH Bray-P Organic matter NO3
––N NH4

+–N Profile N availability index
mg kg–1 g kg–1  mg kg–1 

1 1 7 7.17 22.8 13.8* 2.04 0.80 3.12
2 9 7.17 17.0 11.3* 2.12 0.83 2.75

2 1 14 5.34*** 30.7† 35.4*** 6.18** 1.10* 5.93*
2 6 6.77*** 63.3† 23.4*** 3.10** 1.50* 2.27*

4 1 10 6.31 25.6** 25.0* 1.82* 2.89** 4.73**
2 14 6.43 12.9** 19.4* 1.27* 2.03** 3.70**

5 1 15 6.09** 30.5* 35.0 8.41* 3.52 5.93*
2 6 6.53** 50.0* 33.3 3.85* 2.00 3.81*

* MZ within a field are statistically significant at P < 0.05.
** MZ within a field are statistically significant at P < 0.01.
*** MZ within a field are statistically significant at P < 0.001.
† MZ within a field are statistically significant at P < 0.10.
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CONCLUSIONS

In this study, we found that soil properties could be used under 
certain soil conditions to delineate MZ within fields that identify 
spatial variability in the crop in-season response to N rate (CI590) 
and crop yield. In this analysis, two of six fields were found to have 
minimal spatial variability in soil properties and no benefit from 
site-specific N management. In the remaining four fields, check 
plot CI590 values and yields showed the highest correlations with 
bare-soil reflectance measurements in sandy fields and with ECa 

in silt loam fields with eroded slopes. In two of three fields with 
substantial relief, Elevrel showed a strong correlation with check-
plot CI590 and yield. When these variables were used to form MZ 
within each field, different areas of CI590 response to N rate were 
identified in all fields, and different areas of yield response to N rate 
were identified in three of four fields. These results indicate that, in 
silt loam fields with eroded slopes, soil-based MZ can identify spa-
tial variability in crop response to N rate and yield. Our results also 
show that soil data obtained from ground-based proximal sensors 
can appropriately delineate MZ of unique soil chemical properties.

Fig. 2. Chlorophyll index (CI590) response to N rate for Zones 1 and 2 within each field following clustering soil variables in 
Management Zone Analyst. Quadratic-plateau models were fit to average zone CI590 values. The CI590 standard error bars 
are shown for all plots within each zone. Models for Zones 1 and 2 were significantly different within each field (P < 0.05).The 
economically optimum N rate (EONR) was calculated (using SI units) with a fertilizer price/grain price ratio of 7.
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A quick economic analysis showed a potential economic 
benefit to spatially variable N applications using soil-based 
MZ compared with field-uniform applied N in two of the four 
fields with delineated MZ. The benefits were observed in fields 
with silty clay loam and silt loam soils with substantial relief 
and eroded slopes. Further economic benefits could potentially 
be achieved by integrating soil-based MZ and in-season sensor-
based N application. Sensor-based algorithms may need to be 
adjusted by zone to account for differences in crop N response.
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