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Economically optimal nitrogen fertilizer rate 
(EONR) for corn  and other crops can vary substantially 

within fields (Schmidt et al., 2002; Mamo et al., 2003; Scharf 
et al., 2005; Kitchen et al., 2010) and among fields (Schmitt 
and Randall, 1994; Bundy and Andraski, 1995). Current N 
management practices do not address this variability. Most 
U.S. corn producers apply the same rate of N fertilizer to whole 
fields and often to whole farms.

The adoption of tools to diagnose fertilizer N need has been 
slow (Kitchen and Goulding, 2001). In the past 10 yr, prices 
for both N fertilizer and corn have increased substantially, 
increasing the financial incentive to apply no more N than the 
crop needs but also to make sure that N is supplied in sufficient 
amounts. In addition to the agronomic and economic benefits, 
diagnosing and applying the EONR produces environmental 
benefits by reducing nitrate levels left in the soil after harvest 
(Hong et al., 2007). Accurate, convenient, and affordable meth-
ods to diagnose EONR are needed now more than in the past.

Understanding why the EONR varies will help us to devise 
more effective strategies for managing N. It appears that 
variability in crop yield and demand for N is usually not a 
major factor determining the EONR (Lory and Scharf, 2003; 

Nafziger et al., 2004; Scharf et al., 2006b). This leaves vari-
ability in the soil N supply as the probable controlling factor, 
although it would be desirable to have a body of evidence that 
directly supports this hypothesis. Many lab tests for soil N 
availability have been devised, and some have performed well 
in small data sets, but in large data sets they have performed 
poorly (Scharf et al., 2006a; Laboski et al., 2008).

It has long been known that N-deficient corn reflects more 
visible and often less near-infrared light than N-sufficient corn 
(Walburg et al., 1982). Scharf et al. (2006a) showed in a large and 
geographically-dispersed study that chlorophyll meter (transmit-
tance) measurements of corn leaves provided much better predic-
tion of the EONR than any of 26 soil N tests. Improved diagnostic 
accuracy is the main justification for pursuing canopy-sensor-based 
N management in preference to soil-test-based management.

Technological advances have enabled us to use spectral 
measurements of crops to diagnose and control N fertilizer 
rates. Reflectance sensors have logistical advantages over other 
potential spectral measurements. They can manage spatial vari-
ability in N need more easily than hand-held meters, and can 
operate under conditions that prevent the acquisition of aerial 
images. These advantages have led to the development of meth-
ods to translate sensor data into N rate decisions (Mullen et al., 
2003; Dellinger et al., 2008; Scharf and Lory, 2009; Barker and 
Sawyer, 2010; Kitchen et al., 2010). Although there is still a need 
for decision systems to be improved and differences between 
them resolved, reflectance sensors are commercially available to 
guide variable-rate N applications. They can diagnose crop N 
needs and control N application rates at a fine spatial scale. The 
expected benefits are identification of places where N rate can be 
reduced without hurting yield; the identification of places where 
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additional N is needed to achieve full yield; lower residual soil 
nitrate after harvest that can be lost to water; and less in-season 
loss of N to water and air than with preplant N application.

Our objective was to evaluate the agronomic, economic, and 
implied environmental performance of sensor-based variable-rate N 
applications relative to constant N rates chosen by corn producers.

MATERIALS AND METHODS
Fifty-five on-farm demonstrations were conducted from 2004 

to 2008. These demonstrations were distributed widely across 
the corn-growing regions of Missouri (Fig. 1) and included a 
range of soil parent materials and climatic zones. In central 
Missouri, three major soil groups are represented that are widely 
used for corn production: claypan, deep loess, and Missouri 
River alluvial. All demonstration fields in northwest and south-
east Missouri were located on alluvial soils. These two regions 
are underrepresented in our data set relative to the area cropped 
to corn in those regions. The only major region/parent material 
combination used for corn production in Missouri that is miss-
ing from our data set is deep loess soils in northwest Missouri; 
however, average conditions for corn production on deep loess 
soils in central Missouri are nearly identical.

Preplant N rate was chosen by the cooperating producer and 
varied from 0 to 168 kg N ha–1 of available N, with an average 
value of 51 kg N ha–1. This value includes all N in P fertilizer, 
calculated available manure N, starter N fertilizer, and N fertil-
izer applied with preplant herbicides. Background informa-
tion on the demonstration sites and preplant N management 
practices is given in Table 1.

High-N reference areas were created in all demonstration 
fields between 4 and 8 wk before sidedress N application. Some 
reference areas were field-length strips, while others were small 
areas in which the N was applied by hand. Usually the N rate 
in these reference areas was 220 kg N ha–1.

In 2004, all sidedress N applications were made with a Spra-
Coupe sprayer that we transported to the demonstration fields. 
Beginning in 2005, many sidedress N applications were made 
using the producers’ (or service providers’) N application equip-
ment. Over the 5 yr of the project, 19 demonstrations were 

conducted with the Spra-Coupe (sites 1–19 in Tables 1 and 2) 
and 36 with the producers’ applicators (sites 20–55). A range 
of N sources and placements were used due to the diversity of 
equipment used by producers (Table 1). Plots were field-length, 
ranging from 140 to 1165 m (Table 1) with an average of 450 
m. Their width varied from 4.5 to 24 m (Table 1), depending 
on equipment used and number of passes per plot.

Reflectance sensors were installed on the N application equip-
ment (two or three per applicator; Roberts et al., 2009) and used 
to direct variable-rate sidedress N applications to corn at growth 
stages ranging from V6 to V16 (Abendroth et al., 2011) (Table 
1). Sensors were positioned on the front of the applicator and 
directly over the corn row (nadir orientation) at a height of 50 cm 
above the canopy. A fixed N rate chosen by the cooperating pro-
ducer was also applied on the same day. In most demonstrations, 
these were the only two treatments. In some demonstrations, 
additional treatments were included but are not reported here. A 
replicated complete-block design was used in all demonstrations 
with at least 3, and up to 15, replications (Table 1).

Two types of crop reflectance sensor were used: Crop Circle 
210 (Holland Scientific, Lincoln, NE) and Greenseeker (NTech 
Industries, Ukiah, CA) (Table 1). These sensors measure reflec-
tance of pulsed light emanating from the sensor, and effective 
“field of view” is determined by light source geometry, not the 
geometry of the light-measuring component. For the Crop Circle 
sensor, the light source projects over an area of 29 by 9 cm at the 
top of the canopy with the mounting height (50 cm) that we 
used. For the Greenseeker sensor, product information says that 
“optical masking and position of the sensor LEDs allows the 
sensor to view only a 60-cm wide strip regardless of the sensor 
height”. This strip is narrow, approximately 1 cm, giving an illu-
minated area with dimensions of 60 by 1 cm at canopy height.

For both sensors, N rate was calculated from visible/near 
infrared (NIR) reflectance values in the target area divided by 
the visible/NIR value for the high-N reference area. We will refer 
to this parameter as relative visible/near infrared (Rel V/NIR):

Rel V/NIR = (Visible/NIR)target/(Visible/NIR)reference [1]

When the target corn is N-deficient, this value will be >1, since 
the visible reflectance of N-deficient corn is higher than that of 
high-N corn, while the NIR reflectance is usually lower than 
that of high-N corn.

When the Crop Circle 210 sensor was used with corn at the 
V6 or V7 growth stages, Scharf and Lory’s (2009) equation 
relating EONR to green/NIR for the Cropscan sensor (Crop-
scan, Inc., Rochester, MN) was used to calculate N rates:

Crop Circle V6–V7 N rate (kg N ha–1) = 
(363 × Rel V/NIR) – 303  [2]

This equation appeared to perform well despite sensor dif-
ferences and was used throughout the duration of the dem-
onstrations. Dellinger et al. (2008) developed a very similar 
calibration relationship between Crop Circle 210 reflectance 
measurements and optimal N rates at growth stage V6, sup-
porting the validity of this approach.

As corn growth stage advances, the difference in spectral 
properties between N-sufficient and N-stressed corn gets larger 

Fig. 1. Locations of sensor demonstration fields, 2004–2008.
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Table 1. Details of on-farm demonstrations of sensor-based N sidedressing. Applications at sites 1 to 19 were conducted using our 
Spra-Coupe sprayer, while those at sites 20 to 55 were conducted using N applicators owned by the producers or their retailers.

Site  
no.

 
Year

 
Latitude

 
Longitude

Dominant  
soil great group

Pre-plant N Plot Number 
of Reps

Sensor 
used†

Sidedress N

Rate Form‡ Placement Length Width Form‡ Placement Growth stage§

kg ha–1 m

1 2004 39°13’39’’ -92°7’19’’ Albaqualfs 32 MAP broadcast 720 4.5 6 Crop Circle UAN dribble 10

2 2004 39°17’11’’ -93°15’57’’ Udifluvents 0 —- —- 590 4.5 6 Crop Circle UAN dribble 7

3 2004 38°45’24’’ -92°23’8’’ Hapludolls 0 —- —- 475 4.5 7 Crop Circle UAN dribble 7

4 2004 39°38’9’’ -91°46’27’’ Albaqualfs 30 DAP broadcast 765 4.5 3 Crop Circle UAN dribble 8

5 2004 38°56’33’’ -93°31’44’’ Argiudolls 0 —- —- 200 4.5 6 Crop Circle UAN dribble 7

6 2004 39°12’49’’ -92°13’37’’ Epiaqualfs 41 MAP broadcast 320 4.5 6 Crop Circle UAN dribble 8

7 2004 39°18’39’’ -91°59’30’’ Epiaqualfs 45 DAP broadcast 410 4.5 6 Crop Circle UAN dribble 7

8 2005 38°44’57’’ -92°22’41’’ Hapludolls 0 —- —- 470 4.5 6 Crop Circle UAN dribble 11

9 2005 39°19’4’’ -92°50’0’’ Argialbolls 0 —- —- 380 4.5 6 Crop Circle UAN dribble 11

10 2005 39°9’56’’ -93°48’19’’ Endoaquolls 0 —- —- 200 4.5 4 Crop Circle UAN dribble 12

11 2006 39°14’23’’ -92°6’51’’ Albaqualfs 39 DAP broadcast 760 4.5 3 Crop Circle UAN dribble 10.5

12 2006 39°17’32’’ -93°16’7’’ Udifluvents 28 DAP broadcast 515 4.5 3 Crop Circle UAN dribble 9.5

13 2006 38°45’9’’ -92°22’53’’ Hapludolls 0 —- —- 360 4.5 3 Crop Circle UAN dribble 9

14 2006 39°22’35’’ -92°54’33’’ Argiudolls 12 MAP broadcast 360 4.5 4 Crop Circle UAN dribble 10

15 2006 39°6’27’’ -92°7’6’’ Albaqualfs 30 DAP broadcast 400 4.5 3 Crop Circle UAN dribble 9.5

16 2007 36°24’52’’ -89°42’0’’ Argiudolls 0 —- —- 310 4.5 4 Crop Circle UAN dribble 9

17 2007 39°19’9’’ -92°50’6’’ Argialbolls 12 DAP broadcast 410 4.5 4 Crop Circle UAN dribble 9.8

18 2007 38°59’42’’ -92°51’4’’ Udifluvents 0 —- —- 400 9 3 Crop Circle UAN dribble 9

19 2007 38°59’18’’ -92°39’9’’ Hapludolls 0 —- —- 555 4.5 3 Crop Circle UAN dribble 9

20 2005 39°7’49’’ -90°58’48’’ Hapludalfs 56 Urea + DAP broadcast 175 9 8 Crop Circle UAN injected 6

21 2005 38°59’46’’ -93°43’18’’ Endoaquolls 90 chicken litter broadcast 430 24 5 Crop Circle UAN injected 8

22 2005 39°0’57’’ -93°45’1’’ Hapludolls 67 UAN Injected 270 12 6 Crop Circle UAN injected 7

23 2005 39°15’9’’ -91°58’8’’ Epiaqualfs 39 DAP broadcast 760 18 3 Crop Circle NH3 injected 7

24 2006 39°7’22’’ -90°59’43’’ Hapludalfs 56 Urea + DAP broadcast 560 9 5 Crop Circle UAN injected 6.5

25 2006 39°4’11’’ -92°5’4’’ Epiaqualfs 7 MAP broadcast 800 9 6 Crop Circle NH3 injected 7

26 2006 39°5’6’’ -93°44’39’’ Hapludolls 90 chicken litter broadcast 265 12 10 Crop Circle UAN injected 7

27 2006 39°2’1’’ -93°47’7’’ Hapludolls 67 UAN injected 195 12 13 Crop Circle UAN injected 6

28 2006 39°18’51’’ -91°59’28’’ Epiaqualfs 22 DAP broadcast 450 18 4 Crop Circle NH3 injected 8

29 2006 37°3’36’’ -89°42’14’’ Udipsamments 62 UAN broadcast 320 18 6 Greenseeker UAN dribble 6

30 2007 39°7’22’’ -90°59’43’’ Hapludalfs 56 Urea + DAP broadcast 250 9 6 Crop Circle UAN injected 7.5

31 2007 39°9’18’’ -92°8’2’’ Albaqualfs 34 MAP broadcast 1165 9 3 Crop Circle NH3 injected 7

32 2007 39°48’51’’ -94°44’60’’ Endoaquolls 112 DAP broadcast 1020 9 3 Crop Circle UAN dribble 15

33 2007 39°42’18’’ -91°33’29’’ Albaqualfs 50 hog pit slurry injected 140 18 6 Crop Circle UAN dribble 16

34 2007 39°1’34’’ -93°48’22’’ Argiudolls 56 UAN injected 185 12 5 Crop Circle UAN injected 7

35 2007 39°1’30’’ -93°48’32’’ Argiudolls 56 UAN injected 325 12 5 Crop Circle UAN injected 7

36 2007 39°29’30’’ -92°26’17’’ Albaqualfs 84 UAN + DAP broadcast 350 12 15 Crop Circle UAN injected 15

37 2006 39°0’6’’ -91°49’27’’ Epiaqualfs 45 DAP broadcast 370 24 6 Greenseeker UAN dribble 9

38 2007 39°9’58’’ -91°36’44’’ Epiaqualfs 168 hog pit slurry injected 170 24 7 Greenseeker UAN dribble 8

39 2007 39°0’6’’ -91°49’27’’ Epiaqualfs 45 DAP broadcast 360 24 6 Greenseeker UAN dribble 6

40 2007 37°6’20’’ -89°41’32’’ Fluvaquents 56 DAP broadcast 560 12 3 Greenseeker Urea broadcast 7

41 2007 39°15’29’’ -92°0’18’’ Epiaqualfs 0 —- —- 380 24 4 Greenseeker UAN dribble 8

42 2008 39°36’23’’ -92°42’29’’ Argialbolls 120 NH3 injected 865 12 7 Crop Circle UAN injected 14

43 2008 40°21’51’’ -95°33’36’’ Hapludolls 112 NH3 injected 410 18 3 Crop Circle Urea broadcast 10

44 2008 39°7’17’’ -90°59’57’’ Hapludalfs 45 Urea + DAP broadcast 445 9 7 Crop Circle UAN injected 7

45 2008 38°42’37’’ -92°53’28’’ Argialbolls 112 NH3 injected 720 6 6 Crop Circle NH3 injected 7

46 2008 39°43’35’’ -91°32’8’’ Albaqualfs 67 UAN injected 550 12 6 Crop Circle UAN injected 15

47 2008 39°43’2’’ -91°33’33’’ Albaqualfs 67 UAN injected 420 12 8 Crop Circle UAN injected 13

48 2008 39°42’31’’ -91°33’16’’ Albaqualfs 134 hog pit slurry injected 200 12 12 Crop Circle UAN injected 12

49 2008 39°5’20’’ -93°44’36’’ Hapludolls 146 NH3 injected 150 12 8 Crop Circle UAN injected 10

50 2008 39°27’42’’ -92°24’54’’ Epiaqualfs 78 UAN + DAP broadcast 540 12 7 Crop Circle UAN injected 14

51 2008 39°26’42’’ -92°24’13’’ Epiaqualfs 78 UAN + DAP broadcast 610 12 5 Crop Circle UAN injected 12

52 2008 39°29’34’’ -92°26’42’’ Epiaqualfs 78 UAN + DAP broadcast 370 12 4 Crop Circle UAN injected 14

53 2008 36°1’36’’ -90°18’48’’ Hapludalfs 69 UAN injected 370 10 7 Crop Circle UAN dribble 8

54 2008 36°0’43’’ -90°17’27’’ Hapludalfs 69 UAN injected 335 10 6 Crop Circle UAN dribble 7

55 2008 36°0’56’’ -90°17’27’’ Hapludalfs 69 UAN injected 340 10 5 Crop Circle UAN dribble 7

† Crop Circle = Crop Circle 210; Greenseeker = Greenseeker 505 (red and near-infrared).
‡ MAP = monoammonium phosphate; DAP = diammonium phosphate; UAN = urea-ammonium nitrate solution.
§ Number of collared leaves including the seed leaf (Abendroth et al., 2011); in the text, this number is preceded by V for vegetative.
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(Scharf et al., 2006a). This means that different equations are 
needed for different growth stages to convert sensor reflectance 
measurements to N rates. We used Crop Circle 210 measure-
ments from stage V6 to V10 in an N rate experiment (data 
not shown) to assess the change in Rel V/NIR with advancing 
growth stage. Based on our observations in that experiment, we 
modified Eq. [2] to be suitable for growth stages V8 to V10:

Crop Circle V8–V10 N rate (kg N ha–1) = 
(280 × Rel V/NIR) – 225  [3]

This equation was validated in a series of on-farm N rate response 
experiments as being near-optimal at typical price ratios between 
corn grain and N fertilizer (Kitchen et al., 2010).

In the same N rate experiment used to assess the effects of 
growth stage on Rel V/NIR, we compared measurements of 
Rel V/NIR from the two sensors. We observed that Rel V/NIR 
varied more widely when measured with the Greenseeker than 
when measured with the Crop Circle on the same corn. By math-
ematically describing the relationship between Rel V/NIR for 
Crop Circle 210 and Greenseeker, then applying this relationship 
to Eq. [2] and [3], we produced the N rate equations for demon-
strations where the Greenseeker sensor was used:

Greenseeker N rate V6–V7 (kg N ha–1) = 
(245 × Rel V/NIR) – 190  [4]

Greenseeker N rate V8–V10 (kg N ha–1) = 
(190 × Rel V/NIR) – 135  [5]

The Crop Circle 210 sensor was used in all 13 fields in which 
N was applied at corn growth stages V11 to V16. Equation [3] 
was used to calculate the variable N rate for 10 of these fields. 
However, results from Scharf et al. (2006a) suggest that the 
EONR associated with a relative spectral value of 1.0 goes 
down as the season progresses. Therefore, Eq. [3] was modified 
to reflect this observation for the last three demonstrations at 
growth stage V11 or later:

Crop Circle V11–V16 N rate (kg N ha–1) = 
(265 × Rel V/NIR) – 230  [6]

We wrote custom software that averaged the V/NIR value 
for the high-N reference area, stored this value for use during 
fertilization, continuously collected sensor and global posi-
tioning system (GPS) data, calculated the N rate based on the 
appropriate equation (see above), and sent a new rate command 
to the controller once per second. Either two or three sen-
sors were used, each collecting approximately 10 reflectance 
measurements per second, so that each N rate command was 
based on an average of 20 to 30 data points. In 2007, a filter was 
added to the software that discarded measurements from bare 
soil before calculating average V/NIR and N rate. Sensors were 
mounted on the front of the N applicator. In cases where the 
time from when the sensor passed a point until the fertilizer 
reached that point was longer than the processing and control 
time, an appropriate delay was introduced. Minimum and maxi-
mum N rates were selected in consultation with the producer. 

If the calculated N rate was below the minimum or above the 
maximum, the software would change it to these preselected 
values. Sensor data, GPS data, and N rate commands were 
logged continuously during the fertilization operation. The aver-
age N rate for each sensor (variable-rate N) plot was calculated 
using ArcView geographic information systems (GIS) software. 
Maps of N rate command were also produced for each site using 
ArcView.

When liquid N sources (anhydrous ammonia or urea-
ammonium nitrate solution) were used, the minimum N rate 
was usually set near half of the maximum N rate. This kept 
the minimum pressure high enough to distribute the fertilizer 
evenly. In some cases when urea-ammonium nitrate solution 
was the N source, we used Veri-Flow nozzles to allow a wider 
range of N rates while maintaining appropriate pressure.

All cultural practices other than N application were per-
formed or contracted by cooperating corn producers following 
their normal management practices and decision processes. In 
one demonstration, the yield data were obtained using a weigh 
wagon. In all other demonstrations, yield monitor data co-col-
lected with GPS data were used. ArcView GIS software was used 
to delineate treatment areas (based on N application data files), 
identify yield data that were unambiguously within those areas, 
and calculate average yield for each area. Yield data were cleaned 
using Yield Editor software (Sudduth and Drummond, 2007) or 
ArcView. Data were discarded from specific “problem” locations 
where aerial images revealed unusual patterns, where standard 
deviation was high, and where the combine was accelerating or 
decelerating. When data were discarded for these reasons, they 
were also discarded from the adjacent area of the other treat-
ment in the same replication. Extreme yield data points were also 
removed, on the assumption that they were erroneous measure-
ments. Typically values that were more than two standard devia-
tions from the field mean were discarded.

Outcomes were analyzed by considering each demonstration 
field as an independent observation. Average yield and N rate 
were calculated for each treatment (sensor-based variable-rate N 
and producer-chosen N rate) at each site (Table 2). Yield and N 
were assigned economic values using prices of $200 Mg–1 corn 
and $1.30 kg–1 N. These are representative prices at the time of 
writing and give the best current estimate of the value of sensor 
technology. Partial profit was calculated for each location as:

Partial profit = (Value of corn grain) – 
(Cost of N fertilizer applied)  [7]

A t test was performed on the entire population of location 
data to test the hypothesis that sensor impact on yield, N rate, 
and partial profit was zero. t tests were also used to determine 
whether specific subpopulations were different or similar. 
Regression analysis was used to examine the impact of indepen-
dent location variables on yield, N rate, and partial profit.

RESULTS AND DISCUSSION
Production Conditions and Yield Levels

Production conditions were generally favorable during the 5 yr 
of this study, resulting in an average yield of 9.8 Mg ha–1 with 
the producer-chosen N rates (Table 2). This is well above the 
average corn yield in Missouri for these years, and slightly above 
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Table 2. Comparison of outcomes with producer-chosen and sensor-based N rates in 55 replicated demonstrations.

Site  
no.

 
Year

Nitrogen rate, kg ha–1 † Yield, Mg ha–1 Partial profit, $ ha–1

Producer Sensor Difference Producer Sensor Difference Producer Sensor Difference

1 2004 234 195 -39 12.3 11.8 -0.5 2111 2064 -47

2 2004 168 196 28 7.3 7.8 0.4 1223 1272 49

3 2004 202 137 -65 13.5 12.5 -1.0 2388 2277 -112

4 2004 198 137 -62 13.0 11.9 -1.1 2294 2166 -128

5 2004 202 101 -101 13.9 14.1 0.2 2463 2633 170

6 2004 209 152 -57 10.9 10.5 -0.4 1872 1861 -11

7 2004 179 217 38 11.2 12.3 1.1 1974 2133 160

8 2005 202 147 -55 4.5 4.2 -0.3 610 633 23

9 2005 202 92 -110 10.6 10.2 -0.4 1820 1879 59

10 2005 202 113 -88 13.4 13.5 0.1 2376 2506 129

11 2006 207 176 -31 11.7 11.5 -0.3 2035 2027 -8

12 2006 196 241 45 8.6 8.9 0.3 1433 1423 -10

13 2006 202 139 -63 9.1 9.5 0.4 1524 1693 169

14 2006 214 146 -68 11.6 11.3 -0.3 2002 2030 29

15 2006 198 127 -72 10.5 10.1 -0.4 1800 1821 21

16 2007 273 142 -131 11.2 10.0 -1.2 1849 1788 -61

17 2007 214 114 -100 12.2 11.1 -1.1 2113 2035 -78

18 2007 235 223 -12 10.7 10.2 -0.5 1801 1718 -82

19 2007 202 170 -31 10.6 10.8 0.2 1820 1899 79

20 2005 157 189 32 6.4 6.3 -0.2 1058 985 -74

21 2005 166 181 16 8.4 8.9 0.5 1436 1520 84

22 2005 230 217 -12 7.9 7.7 -0.1 1240 1232 -8

23 2005 174 179 6 3.8 4.0 0.1 524 541 17

24 2006 146 108 -38 7.0 6.8 -0.2 1178 1192 13

25 2006 158 158 0 9.5 9.5 0.0 1668 1668 0

26 2006 162 157 -6 9.7 9.4 -0.3 1687 1633 -54

27 2006 230 213 -17 10.4 10.3 -0.1 1734 1736 2

28 2006 157 185 28 8.2 8.0 -0.2 1396 1319 -78

29 2006 241 236 -4 12.6 12.7 0.2 2151 2194 43

30 2007 142 129 -13 8.1 8.2 0.1 1405 1447 42

31 2007 179 205 26 6.9 6.9 0.0 1121 1087 -34

32 2007 291 267 -25 13.7 13.9 0.2 2307 2377 70

33 2007 143 146 2 11.0 10.9 -0.1 1976 1951 -25

34 2007 213 237 25 9.9 10.4 0.5 1657 1724 66

35 2007 213 237 25 7.2 7.6 0.4 1126 1180 54

36 2007 226 271 45 7.9 9.2 1.3 1257 1444 188

37 2006 196 122 -74 9.1 9.4 0.3 1531 1679 147

38 2007 280 250 -30 13.1 13.2 0.1 2211 2263 52

39 2007 196 141 -55 6.7 6.9 0.3 1050 1172 122

40 2007 291 269 -22 12.3 12.2 -0.1 2035 2053 17

41 2007 134 155 20 8.5 9.3 0.8 1502 1623 122

42 2008 187 183 -4 10.3 10.4 0.2 1772 1812 41

43 2008 157 215 58 8.5 9.3 0.8 1467 1551 83

44 2008 131 118 -13 10.2 10.1 -0.1 1841 1839 -2

45 2008 207 190 -17 12.0 11.9 -0.1 2085 2082 -2

46 2008 125 170 45 9.2 10.4 1.3 1637 1825 188

47 2008 158 206 48 10.4 12.2 1.8 1841 2136 294

48 2008 189 203 13 11.2 11.3 0.1 1948 1955 7

49 2008 193 207 14 9.4 9.8 0.4 1590 1649 59

50 2008 158 167 9 7.7 8.0 0.3 1310 1360 50

51 2008 146 187 41 8.1 9.2 1.1 1396 1563 167

52 2008 146 175 29 8.3 9.5 1.2 1442 1637 195

53 2008 209 230 20 9.7 9.8 0.1 1633 1629 -4

54 2008 209 181 -28 8.8 9.0 0.2 1452 1526 74

55 2008 209 188 -21 10.4 10.5 0.1 1773 1813 41

Avg. 194 179 -16* 9.8 9.9 0.1 1672 1714 42***

*Different than zero with α = 0.05
***Different than zero with α = 0.001
†  Nitrogen rates include the pre-plant N shown in Table 1
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the national average. Two sites were drought-affected in 2005, 
resulting in treatment mean yields of 3.8 and 4.4 Mg ha–1 with 
the producer-chosen N rates. The highest mean yield obtained 
using producer-chosen N rates was 13.9 Mg ha–1.

Sensor Impact on Nitrogen Rate

Over all 55 demonstration fields, an average of 16 kg ha–1 less 
N was applied when sensors chose N rates than when cooperat-
ing producers chose them (P = 0.015) (Table 2). This is identi-
cal to the average reduction in N rate seen when sensors were 
used to choose fixed N rates in 15 production wheat (Triticum 
aestivum L.) fields in Oklahoma (Butchee et al., 2011). Although 
sensors chose average N rates higher than the producer’s rate in 
some fields, more often the average N rate was lower than the 
producer’s. At 21 sites, the sensor-based rates were more than 
25 kg N ha–1 below the rates chosen by the cooperating pro-
ducer, with an average savings in these fields of 63 kg N ha–1. On 
the other hand, at 14 sites, the sensor-based rates were more than 
25 kg N ha–1 above producer-chosen rates, and the average rate 
increase was 37 kg N ha–1 in these fields.

The effect of sensor-based N management on average N rate 
was related to the year and the weather. In 2008, excessive spring 
rainfall across much of the Midwest created the potential for N 
loss. Eleven of the 14 demonstration fields in 2008 received more 
than 40 cm of rainfall from April through June. That year the 
sensor-based N rates were, on average, 14 kg N ha–1 above the rates 
chosen by producers (P = 0.09). In contrast, for 2004 through 
2007 sensor-based rates were 37, 30, 25, and 19 kg N ha–1 below 
producer-chosen rates, respectively (P = 0.11, 0.19, 0.05, and 0.16, 
respectively). Average N rate reduction for combined data from 
2004–2007 was 26 kg N ha–1 (P = 0.0011) with no effect on yield 
(see next section). Taken together, our results suggest that the rate 
decisions produced by the sensors compensated for weather-related 
N losses more than did the rate decisions made by the producers.

Several other researchers have found that using sensors to 
guide N rates has reduced N use compared to conventional or 
producer-chosen N rates without reducing yield. These outcomes 
have mostly been accomplished with recurrent sensor measure-
ments that trigger N application through irrigation water when 
the relative sensor value falls below a critical value. Bausch and 
Delgado (2005) used this approach to lower N rates applied 
to corn through pivot irrigation by more than half without 
reducing yield. The amount of N saved in two field zones being 
managed was related to the amount of soil nitrate present before 
planting in these zones. Bausch and Diker (2001) lowered N rate 
by 39 kg N ha–1 with no effect on corn yield, and Bronson et al. 
(2011) lowered N rate by 22 kg N ha–1 with no effect on cotton 
(Gossypium hirsutum L.) yield. Stone et al. (1996) used sensors 
to guide a single in-season N application to wheat, reducing N 
rates by 32 and 57 kg N ha–1 in two 70-m transect experiments 
without influencing yield. Our results extend these findings to 
a much larger population of fields, and augment the evidence 
that sensors-based N rates can save N without yield penalty even 
when in-season N will be applied only once.

The effect of sensor-based N management on N rate was 
also dependent on the amount of N applied before planting. 
In fields that received <75 kg N ha–1 before planting (includ-
ing manure, P fertilizer, starter fertilizer, and fertilizer applied 
with herbicides), the use of sensors reduced average N rate by 

24 kg N ha–1 (P = 0.002). In fields that received more than 
75 kg N ha–1 before planting, the use of sensors did not affect 
N rate (P = 0.49). In our sensor interpretations (Eq. [2–5]), a 
minimum of 55 to 65 kg N ha–1 is recommended even when 
the target corn has the same appearance as the high-N reference 
corn (i.e., Rel V/NIR = 1.0). With a pre-plant N rate above 
75 kg N ha–1 and a minimum of 55 kg N ha–1 sidedress, there 
is little potential to save N unless the producer’s normal rate 
is quite high. Why do our sensor interpretations recommend 
a minimum sidedress of 55 kg N ha–1? During our calibration 
research (Scharf and Lory, 2009), corn with Rel V/NIR = 
1.0 sometimes needed low or moderate additional N rates to 
achieve optimal yield. The implication is that reflectance sen-
sors cannot reliably distinguish between corn that is slightly 
N-deficient and corn that is N-sufficient. This is consistent 
with other calibration research relating EONR values to 
spectral measurements of corn (Scharf and Lory, 2002; Sripada 
et al., 2005; Scharf et al., 2006a; Dellinger et al., 2008), which 
has generally found an average EONR of 30 to 45 kg N ha–1 
when the relative spectral value = 1.0. In our system, low pre-
plant N rates (below 75 kg N ha–1) increase the opportunity 
for sensors to reduce total N use and save money on N.

Sensor Impact on Yield

Relative to the producer’s N rate, we found weak evidence 
(P = 0.18) that sensors increased yield by 110 kg ha–1 over all 
demonstration sites. Raun et al. (2002) found a similar level of 
evidence for a 270 kg ha–1 wheat yield increase with sensor-
based variable-rate N in three small-plot experiments when no 
pre-plant N was applied. 

In 2008, with a wet spring and sensors recommending (on aver-
age) higher N rates than those used by producers, average grain 
yield with the sensor system was 526 kg ha–1 greater than with 
producer-chosen N rates (P = 0.007). This confirms that higher 
N rates were justified under the weather conditions of 2008. 
There was essentially no evidence of any sensor influence on yield 
during any of the other 4 yr (0.52 ≤ P ≤ 0.78 by t test). A two-sam-
ple difference of means test showed that the yield effect of using 
sensors in 2008 was different than the effect in all other years 
combined (P = 0.002). Our results from 2008 indicate that sen-
sors can identify times and places in which yield can be increased 
by putting on more N than the producer’s normal rate. This is 
an important factor favoring profitability and adoption. Even 
more important for adoption is that when N rates are reduced, as 
happened on average in 2004–2007, that this does not negatively 
impact yield. This is, on average, what we observed.

Yield was usually increased when sensor-based N rates 
exceeded producer-chosen rates. In the 19 fields where sensor-
based N rates were more than 10 kg N ha–1 higher than producer 
rates, yield was increased by an average of 620 kg ha–1 (P = 
0.0001) above the yield achieved with the producer’s N rate.

Sensor Impact on Partial Profit

Relative to the producer’s N rate, sensors increased partial profit 
by $42 ha–1 (P = 0.0007) averaged over all locations (Table 2). 
This effect was a product of both reduced N use (2004–2007) 
and increased yield (2008). Among years, only in 2008 did sensor 
use convincingly increase partial profit (P = 0.004); this was due 
to increased yield (P = 0.007). The consistent N use reductions 
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from 2004–2007 (P = 0.0011) also contributed to the increase in 
partial profit observed over all 55 fields.

For producers who currently apply sidedress N, the observed 
level of profit advantage ($42 ha–1) is probably enough to pay for 
the sensors and the management time required to learn to use 
them effectively. However, this level of profit advantage may not 
be enough to generate fast or enthusiastic adoption. For produc-
ers who do not currently apply sidedress N, it is almost certainly 
not enough to motivate them to change their application timing.

A full economic analysis is beyond the scope of this paper, 
but a rudimentary analysis may help give some perspective on 
economic benefits to the user. A simple case would be a full-time 
farmer who grows 200 ha of corn annually. If that producer 
achieves the same level of profit advantage that we did in our 
55 demonstration fields, the gross benefit of sensor use each 
year will be 200 ha × $42 ha–1 = $8400. Assuming that the 
producer already owned a fertilizer applicator with a controller 
and a GPS (true for many producers), only sensors and associated 
electronics would need to be purchased. The cost to purchase 
three Ag Leader OptRx sensors and associated electronics is 
currently about $10,500, or for four Greenseeker sensors and 
associated electronics is about $16,500. Either system would 
be paid for within a few average years at these prices. As with 
other emerging technologies, prices are likely to come down as 
the market matures and as adoption increases. The value of the 
management time to get the system set up and to learn to use 
the sensors well is difficult to quantify but is also an important 
component of overall economic outcome. Economic return 
would be greater for producers with more than 200 ha of corn, 
and lower for those with less. Profitability would also hinge on 
whether the sensors can be used profitably to manage N on other 
N-requiring crops in the producer’s operation (such as wheat 
or cotton), and whether they can be used profitably to variably 
manage other inputs (such as growth regulators in cotton). For 
sensors mounted on fertilizer applicators owned by retailers, the 
economics are more complex, with more fields covered, less cost 
per field, and benefits split between the producer and the retailer.

We found that the effect of sensors on partial profit was great-
est when they recommended either more N or substantially less 
N than the producer-chosen rates (Fig. 2). Identifying fields that 
need either more or less total N than the producer’s rate appears 
to be one important benefit of sensor use. It is difficult to assess 
the value of simply redistributing the same amount of N (i.e., 
sensor N rate change = 0 in Fig. 2). However, our data suggest 
that this redistribution would give partial profit increases in the 
range of $16 ha–1 (average for all fields with –20 < sensor N rate 
change <20 kg N ha–1) to $35 ha–1 (from regression in Fig. 2). 
The value from the regression equation may be pulled up by the 
large positive values on the right side of Fig. 2.

The sensor interpretations that we used produced, on average, 
N rate decisions that were economically superior to the rates 
chosen by the producer both when they recommended more N 
and when they recommended less N than the producer’s rate. 
However, the rates chosen by the sensors were not always better 
than those chosen by producers. There were fields where the 
sensors recommended a higher N rate than the producer’s rate 
without producing higher yield, resulting in lower partial profit 
(lower right quadrant of Fig. 2; Table 2). More often, the higher 
N rate produced a yield benefit that more than offset the cost of 

the N (upper right quadrant). Similarly, there were fields where 
sensors reduced the N rate relative to the producer’s rate but 
this was an incorrect decision, reducing yield and partial profit 
(lower left quadrant). Again, it was more common when sensors 
recommended a reduced N rate that this did not affect yield and 
partial profit was increased (upper left quadrant). We were not 
able to identify any common factors associated with poor N rate 
decisions based on sensor measurements.

The economic advantage of sensors over the producer-chosen 
N rate was higher (P = 0.008 from linear regression; quadratic 
term not significant) in fields where N was applied at later 
growth stages. This is probably in part an artifact. In 2008, the 
average partial profit advantage was higher than in any other year 
and demonstrations were conducted at later growth stages than 
in any other year. This confluence contributes to the significant 
regression result without being based on a causal relationship 
between the two variables. However, it does make sense that 
N-need diagnoses would be more accurate at later growth stages 
when the roots have explored a greater soil volume and the 
unpredictable processes of soil N mineralization and N loss have 
had time to occur. Added to the timing effect on sensor accuracy 
is any effect of N timing on yield. Across this group of experi-
ments, there was no significant effect of the growth stage at 
which N was applied on yield (P = 0.48). To the extent that there 
was a trend, it was that yield was higher with later application.

The partial profits associated with sensor use were evaluated 
using prices of $200 Mg–1 corn and $1.30 kg–1 N. These are 
representative prices at the time of writing and thus give the best 
current estimate of the value of sensor technology. Future price 
changes could substantially alter that value. Because the partial 
profit advantage due to sensors in this study resulted from both N 
savings and yield increases, high prices for both corn and N favor 
the economics of sensor adoption. If corn and/or N prices go up, 
the economic advantage of sensor use will increase; conversely, if 
prices go down, the advantage of sensor use will decrease.

Fig. 2. Sensor profit change (partial profit with sensor-based 
N rates minus partial profit with producer-based N rates) as a 
function of sensor N rate change (average N rate with sensors 
minus the producer’s N rate in the same field). Sensor-based 
management was most profitable when sensors recommended 
more N than the amounts chosen by producers, or when 
sensors recommended substantially less N than producers 
chose. When sensors recommended more than 10 kg N ha–1 
above the rate chosen by the producer, yield was increased by 
an average of 620 kg ha–1 (P = 0.0001), enough to pay for the 
extra N and to increase profit. Over all 55 locations, sensors 
increased partial profit by an average of $42 ha–1 (P = 0.0007) 
relative to producer-chosen N rates applied at the same timing.
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Sensor Impact on the Environment
Nitrogen escaping from corn production systems is known 

to have negative effects on water quality (Rabalais et al., 1996) 
and air quality (Robertson et al., 2000). We do not have any 
direct measures of N escape to water or air from the fields we 
studied. This section will briefly address the potential environ-
mental implications of changes in N rate due to sensor use.

Sensor use reduced the average N fertilizer rate in this study 
by 16 kg N ha–1 (Table 2), which is within the likely range of 
10 to 50 kg N ha–1 suggested by Roberts et al. (2010). This 
represented an 8% reduction in the total amount of N (all fer-
tilizer and manure N) applied. However, a great deal of N ends 
up in the crop and is carried away during harvest. This N is 
not escaping to other environments where it may have undesir-
able effects. A more useful metric for environmental impact is 
“surplus N”: the fertilizer (and manure) N applied in excess of 
the N removed in grain during harvest. This represents a pool 
of N that is vulnerable to loss to the environment.

Use of sensors to guide N rates reduced surplus N by an esti-
mated 24 to 26% in our demonstration fields. This represents our 
best estimate of how much sensor-based management reduced 
the potential for N escape to the environment. With producer-
chosen N rates, average total N applied was 194 kg N ha–1. 
Using the National Research Council (2000) value for corn 
grain protein content, we estimated average N removal in grain 
to be 129 kg N ha–1, giving a surplus of 65 kg N ha–1. Use of 
sensors reduced total N applied to 179 kg N ha–1 while increas-
ing estimated N removal to 131 kg N ha–1, giving a surplus of 
48 kg N ha–1, a 26% reduction. The lack of actual measured 
grain N concentrations in our study introduces uncertainty 
into this estimate, but for average behavior over 55 fields, the 
National Research Council value should be relatively robust. 
Nitrogen rate also affects grain N concentration, again intro-
ducing uncertainty. We used data from Shepard et al. (2011) 
to estimate the influence of N rate on grain N concentration 
for both treatments at all locations. These corrections did not 
change our estimate of “surplus N” for producer N rates, but 
increased surplus N for sensor-based N rates by 1 kg N ha–1. This 
analysis suggests low sensitivity of average surplus N estimates to 
varying grain N concentration due to N rate within the range we 
encountered. Our estimate of the reduction in surplus N due to 
sensor use changed slightly when we corrected grain N concen-
tration for N rate, dropping to 24%.

Another useful metric is the proportion of applied N that is 
removed in grain, which is one measure of N efficiency. Sensor 
use increased the proportion of applied N removed in grain 
from 67 to 73% with either the National Research Council 
(2000) grain N value or with that value adjusted for N rate 
based on data from Shepard et al. (2011).

These results are consistent with earlier research showing 
that applying the EONR reduces soil nitrate levels found after 
harvest (Andraski et al., 2000; Hong et al., 2007). This effect is 
usually not linear. Nitrogen overapplication (above the EONR) 
changes postharvest soil nitrate more than N underapplication. 
Similar results have been found in potato (Solanum tuberosum 
L.) production (Bélanger et al., 2003).

As a result of the environmental benefits that we observed, 
the Natural Resources Conservation Service in Missouri has 
approved sensor-based sidedressing as a practice available for 

cost-share payments from their Environmental Quality Incen-
tives Program (EQIP). This can add to the modest economic 
benefits that we observed for sensor use, potentially increasing 
adoption rate and environmental benefits.

Adoption

The economic benefits to sensor use that we saw mean that 
lower incentive levels will be needed to get adoption than for 
practices that have costs but no economic returns. At the time of 
writing, we are aware of 6 of the 27 cooperating producers who 
have adopted sensor-based N sidedressing. Five of the six have 
received EQIP cost-share payments on at least some fields. All 
six of these producers used and operated their own equipment to 
conduct the sensor demonstrations. One possible interpretation 
is that participating in the demonstrations and watching the sen-
sors control N rates convinced producers to adopt this approach. 
However, producers who agreed to conduct sensor-based N 
demonstrations using their own equipment made a larger time 
commitment (installation and removal of sensors, computer, and 
so on) than the other producers. They may have been willing to 
make this commitment because they were already more disposed 
than the others to adopt sensor technology.

Sensor Interpretation:  
Context, Options, and the Future

Reflectance sensors are a relatively new technology for diagnos-
ing crop N status and need. Although the body of research associ-
ated with this technology is steadily increasing, we are still far from 
a consensus about how to best convert sensor values to N rates. 
This study showed that one system for interpreting sensor values 
produced yield, economic, and environmental benefits. A different 
algorithm for interpreting sensor measurements may have produced 
larger benefits, no benefits, or “negative benefits”. The sensor and 
the interpretation of the sensor data create an integrated package 
that is evaluated as a whole; it is not possible to evaluate the sensors 
without evaluating the interpretations. The fact that one system 
produced benefits is encouraging for the future of reflectance 
sensors for controlling N application rates. Comparing different 
interpretation systems and refining them to optimize outcomes is 
still needed to maximize sensor utility and adoption.

One approach that may help to improve the performance of 
sensor-based N rate recommendations is the incorporation of 
additional relevant information in making the N rate decision. 
Zillmann et al. (2006) found that sensor-based N rates for 
winter wheat performed well except in areas where other factors 
limited yield, such as shallow soils with low water-supplying 
capacity.

CONCLUSIONS
Using sensors to control sidedress N rates for corn produced 

yield, economic, and environmental benefits in 55 on-farm dem-
onstrations. The real-world scale of these demonstrations, and 
the wide range of production environments encountered, suggest 
that our results give relatively robust estimates of the outcomes 
that can be expected when corn producers adopt sensor-based N 
sidedressing. Our results confirm that reflectance sensors com-
bined with our interpretation system were able to choose N rates 
for corn that performed better than rates chosen by producers.
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