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ABSTRACT

Maps of apparent electrical conductivity (ECa) of the soil profile are widely used in

precision agriculture. A number of ECa sensors are commercially available, each with a unique

response function (i.e., the relative contribution of soil at each depth to the integrated ECa

reading). Our past research estimated depth to an argillic horizon (i.e., topsoil depth, TD) on

claypan soils by fitting empirical equations to ECa sensor data. The objective of this research

was to determine if TD estimates could be improved by combining data from multiple ECa

sensors and by solving for TD by inverting a two-layer soil model incorporating instrument

response functions. Data were obtained with three sensors having five different ECa depth-
response functions (Veris 3150*, Geonics EM38 vertical dipole mode, and DUALEM-2S) on

two Missouri claypan-soil fields. Soil cores obtained in each field provided measured TD data

for calibration and validation. Using a numerical optimization approach, response-function

models were developed for ECa variables individually and in combination. Similarly, linear

regression was applied to single and multiple variables. Root mean square error of validation

(RMSEv) of single-variable TD estimates was 22 to 25 cm, with better results for those variables

with moderately deep ECa response functions. Results from the model-based approach were

very similar to those obtained by regressing TD on ECa
21. The best calibrations using multiple

variables in model inversion or regression were somewhat better than those using single

variables, with RMSEv of 22 cm and 20 cm, respectively. For all approaches, highest TD errors

were localized to one area of one field, possibly because soils in this area violated the model

assumption of spatially homogeneous soil layer conductivity. Although these calibrations are

sufficiently accurate to be useful in TD mapping, a model solution allowing layer conductivities

to vary spatially should be investigated for possible improvements.

Introduction

Efficient and accurate methods of measuring

within-field variations in soil properties are important

for precision agriculture. Sensors that can collect dense

datasets while traversing a field provide several advan-

tages over traditional measurement methods that

involve soil sample collection and analysis. These

advantages may include lower cost, increased efficiency,

and more timely results. In addition, the ability of a

sensor to obtain data at many more points, as compared

to sampling methods, means that overall spatial

estimation accuracy can increase even if the accuracy

of individual measurements is lower.

Apparent electrical conductivity (ECa) of the soil

profile is a sensor-based measurement that can provide

an indirect indicator of important soil physical and

chemical properties. Soil salinity, clay content, cation

exchange capacity (CEC), clay mineralogy, soil pore size

and distribution, and soil moisture content are some of

the factors that affect ECa (McNeill, 1992). For saline

soils, most of the variation in ECa can be related to salt

concentration (Williams and Baker, 1982). In non-saline

soils, conductivity variations are primarily a function of

soil texture, moisture content, bulk density, and CEC

(Corwin and Lesch, 2005). A theoretical basis for the

relationship between ECa and soil properties was

developed by Rhoades et al. (1989). In this model,

ECa was defined as a function of soil water content, the

electrical conductivity of the soil water, soil bulk

*Mention of trade names or commercial products is solely
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density, and the electrical conductivity of the soil

particles. Recently, techniques have been developed to

use this model for predicting the expected correlation

structure between ECa data and multiple soil properties

of interest (Lesch and Corwin, 2003).

Two types of ECa sensors are used in agriculture,

an electrode-based sensor requiring soil contact and a

non-contact electromagnetic induction (EM) sensor.

The Veris 3100/3150 (Veris Technologies, Salina, KS)

uses six rolling coulters for electrodes and provides two

simultaneous ECa measurements (Lund et al., 1999).

The EM38 (Geonics Limited, Mississauga, Ontario,

Canada) is a lightweight bar designed to be carried by

hand to provide stationary ECa readings. To implement

mobile data acquisition with this unit, it is necessary to

assemble a transport mechanism and data collection

system (e.g., Sudduth et al., 2001). The EM sensing

approach (McNeill, 1992) is also used by the DUALEM

sensors (Dualem, Inc., Milton, Ontario, Canada) which

provide two or more simultaneous measurements. Each

type of ECa sensor has its own operational advantages

and disadvantages (Sudduth et al., 2003).

In addition to estimating levels of the soil

properties given above, ECa has been used to estimate

the thickness of soil layers with contrasting conductiv-

ities. Our group developed ECa regressions for the depth

of flood-induced sand deposition (Kitchen et al., 1996)

and for topsoil depth (TD) above a subsoil argillic

horizon (Doolittle et al., 1994; Kitchen et al., 1999;

Sudduth et al., 2001; Sudduth et al., 2003). Others have

also reported statistical relationships between ECa and

the depth of contrasting soil layers (Bork et al., 1998;

Mueller et al., 2003; Cockx et al., 2007).

Researchers have also developed procedures to

estimate layer conductivities and thicknesses by invert-

ing theoretical models of ECa instrument response. In

this way, the form of the relationship is defined by the

nonlinear theoretical response model, rather than by

whatever model might be fit in a statistical solution.

Many of these inversion solution approaches (e.g.,

Hendrickx et al., 2002) require data from an ECa sensor

held at multiple heights above the ground at each

sampling point. Practical application of such approach-

es for mobilized mapping of large areas is therefore

limited. Saey et al. (2008) used single-height EM38 data

in an inversion solution to directly solve for the depth of

loess topsoil over clay subsoil. The underlying assump-

tion of this approach was that each soil layer was

spatially homogeneous, with a uniform layer ECa over

the study area. At a 2.7-ha test site, a strong nonlinear

relationship (r2 5 0.86) was found between ECa and

loess topsoil depth. Results were confirmed using an

independent validation set with a range in topsoil depth

of 1.5 m, where a root mean square error (RMSE) of

22 cm was found. In further work on the same test site,

Saey et al. (2009) investigated two additional model

inversion approaches: (1) using the two ECa channels of

an EM38-DD sensor in a solution that also assumed

spatial homogeneity of the two soil layers, and (2) using

the four ECa channels of a DUALEM-21S sensor in a

solution that allowed variable layer conductivities to be

calculated at each measurement point. These two

approaches produced equivalent accuracies, with RMSE

values of 26 cm. However, the four-channel approach

was described as more efficient because it did not require

the 56 calibration measurements of TD that were used

with the EM38-DD dataset and with the EM38 dataset

of Saey et al. (2008).

The TD above the argillic horizon is an im-

portant factor in soil quality and productivity for the

claypan soils of the central U.S.A. (Kitchen et al., 1999).

In past research, we estimated this TD by fitting

empirical regression equations to single-sensor ECa

data. The objective of this research was to determine if

other approaches could improve TD estimates. These

other approaches included (1) combining data from

multiple ECa sensors, and (2) solving for TD by

inverting a two-layer soil model incorporating ECa

response functions.

Materials and Methods

ECa Sensors and Response Curves

The Geonics EM38 can be operated in two

orientations, vertical dipole and horizontal dipole. The

effective measurement depth, above which 70% of the

cumulative response occurs, is approximately 1.5 m for

the vertical dipole mode and 0.75 m for the horizontal

dipole mode (McNeill, 1992). In this research, the EM38

was operated only in the vertical dipole mode. We chose

not to use the EM38 horizontal dipole mode because

this would have required a second data collection

operation. Additionally, because the depth response of

the EM38 horizontal reading is between those of the two

Veris readings, we expected that little additional

information would be obtained. The ECa measurement

from the EM38 vertical dipole mode (designated as

ECa-em in this study) is averaged over a lateral area

approximately equal to the measurement depth

(McNeill, 1992).

For all ECa instruments, the theoretical incremen-

tal response to soil conductivity varies as a nonlinear

function of depth. That is, a soil layer of a given

conductivity will affect the measured reading differently,

depending on how far away the instrument is from the

layer. The form of the response equation varies for

different coil configurations. For the EM38 in vertical
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dipole mode, where both transmitter and receiver coil

windings are horizontal, the response (Wem) is given by
Eq. (1) (McNeill, 1980):

Wem~4z 4z2z1
� �{3=2

, ð1Þ

where z 5 distance below sensor, m. Sensitivity in the
vertical mode is highest at about 0.4 m below the

instrument (Fig. 1(A)). The ECa measurement is an

integrated response to soil conductivity with depth, as

weighted by this instrument response function (McNeill,

1992). Theoretical considerations underlying the deriva-

tion of the instrument response functions are discussed

by McNeill (1980).

The DUALEM-2S incorporates a single transmit-

ter and two receivers, simultaneously providing two

different depth-weighted estimates of ECa. The trans-

mitter and one receiver have horizontal windings,

forming what is termed a horizontal co-planar (HCP)

geometry and giving the deeper of the two readings. The
other receiver has vertical windings, forming a perpen-

dicular (PRP) geometry that generates a shallower

reading. For the purposes of this report, we refer to

the two DUALEM-2S readings as ECa-Ddp (deep) and

ECa-Dsh (shallow). Using the same definition as for the

EM38 above, the manufacturer reports effective sensing

depths of 3.0 m and 1.2 m, respectively (Dualem, 2005).

The HCP geometry of the DUALEM-2S is the same as
used in the EM38 vertical dipole mode, so the

theoretical response in that mode (Eq. (2)) varies from

Eq. (1) only because of the fact that the coil separation is

2 m rather than the 1 m of the EM38:

WHCP~WDdp~2z z2z1
� �{3=2

: ð2Þ

The response of the DUALEM-2S in the PRP mode,

with a 2.1-m coil separation and a different receiver coil

orientation, is given by Eq. (3) (Dualem, 2005):

WPRP~WDsh~2 0:907z2z1
� �{3=2

: ð3Þ
The Veris 3100 (Lund et al., 1999) and 3150, whose

ECa sensing component is functionally equivalent to the

3100, use rolling coulter electrodes to directly sense both

shallow and deep readings of ECa (designated as ECa-Vsh

and ECa-Vdp, respectively). As with the EM sensors, the

Veris response to soil conductivity varies as a nonlinear

function of depth. The electrodes of the Veris 3100/3150

are configured in a Wenner array. The theoretical

response of the Wenner array (Roy and Apparao,

1971) is given by Eq. (4) for the Veris deep reading and

by Eq. (5) for the Veris shallow reading:

WVdp~5:87z 0:538z4z2
� �{3=2

{ 2:15z4z2
� �{3=2

� �
ð4Þ

WVsh~1:87z 0:0544z4z2
� �{3=2

{ 0:218z4z2
� �{3=2

� �
:ð5Þ

The graph of these responses (Fig. 1(A)) shows them to

be similar in shape to the response of the two EM

sensors, although the two Veris responses reach a

Figure 1. Incremental (a) and cumulative (b) responses of the ECa sensors used in this study.
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maximum nearer the soil surface and then decrease more

rapidly with depth.

Integrating the response curves with respect to

depth gives the cumulative fraction of the total response

to depth z (Eqs. (6)–(10)):

Rem~1{ 4z2z1
� �{1=2 ð6Þ

RDdp~1{ z2z1
� �{1=2 ð7Þ

RDsh~0:952z 0:907z2z1
� �{1=2 ð8Þ

RVdp~1{11 2 225z2z121
� �1=2

{ 900z2z121
� �1=2

� �

225z2z121
� �{1=2

900z2z121
� �{1=2

ð9Þ

RVsh~1{7 2 900z2z49
� �1=2

{ 3600z2z49
� �1=2

� �

900z2z49
� �{1=2

3600z2z49
� �{1=2

:

ð10Þ

The variation between the cumulative response

curves (Fig. 1(B)) clearly shows that the different

sensors respond to different soil volumes. As an

example, consider the depth above which 90% of the

response is obtained. With the Veris shallow reading

(ECa-Vsh), 90% of the response is obtained from the

soil above the 0.3-m depth. For the Veris deep reading

(ECa-Vdp), 90% of the response is obtained from the soil

above the 1.0-m depth. With the EM38 vertical reading

(ECa-em), 90% of the response is obtained above about

5.0 m. With the DUALEM-2S, the 90% threshold

is reached at about 2.2 m for ECa-Dsh and 10 m for

ECa-Ddp. The response curves (Fig. 1) are based on

equations that assume a homogeneous soil volume. Actual

weighting functions will vary somewhat because of ECa

differences among soil layers, with a highly conductive

surface layer reducing the response depth (Barker, 1989).

Single-Variable Two-Layer Soil Model

Following McNeill (1980) and Saey et al. (2008),

we modeled the claypan soil profile as two layers of

homogeneously conductive material. Further, because

we collected EM38 and DUALEM-2S data with the

instruments above the ground on wheeled carts, the

overall model consists of three layers, including the air

gap between the instrument and the soil. The model (Eq.

(11)) gives the instrument reading (ECax, where x is the

instrument designation, e.g., Vdp) as a function of

height of the instrument above the ground (HI), ECa of

the topsoil (ECaT), ECa of the subsoil (ECaS), and

topsoil depth (TD):

ECax~

ðHI

0

ECairWx(z) dzz

ðTDzHI

HI

ECaTWx(z) dz

z

ð?

TDzHI

ECaSWx(z) dz:

ð11Þ

Because ECaT and ECaS are assumed constant

over their respective depth intervals, and assuming ECair

5 0, the model can be integrated and expressed in terms

of the cumulative response functions (Eq. (12)):

ECax~ECaT Rx TDzHIð Þ{ECaT Rx HIð Þ

zECaS Rx ?ð Þ{ECaS Rx TDzHIð Þ:
ð12Þ

Equation 12 is solved for Rx(TD + HI), and then z 5

TD + HI is obtained by inverting the appropriate

cumulative response (Eqs. (6)–(10)), either analytically

or numerically. The two unknown constants ECaT and

ECaS are determined iteratively as the values of these
two parameters that minimize the RMSE between the

calculated TD and measured TD for the points in a

calibration dataset, subject to the constraint TD $ 0.

Multiple-Variable Two-Layer Soil Model

We considered two ways of solving a multiple-

variable two-layer soil model, following the two

approaches given by Saey et al. (2009). The models
used in the solutions are based on Eq. (12) above,

replicated for each ECa variable included. In the first

approach, multiple ECa datasets are used along with TD

calibration point data. The solution proceeds as

described above for the single-variable approach, except

that the TD error is minimized in a least-squares sense

with respect to the TD values calculated from all ECa

datasets included in the analysis. In the second
approach, TD calibration data are not used. Rather,

the system of response equations (based on one instance

of Eq. (12) for each ECa variable included) is solved

simultaneously for TD, ECaT, and ECaS. This requires a

minimum of three ECa variables for an exact solution. If

more ECa variables are included, a least-squares

optimized solution is obtained.

Study Fields

Data were collected on two fields (Field 1, 35 ha

and Field 2, 13 ha) located within 3 km of each other

near Centralia (39u 139 N, 92u 089 W), in central

Missouri. The fields were managed in a corn-soybean

rotation for at least 10 yr prior to data collection, using

either minimum-tillage (Field 1) or no-tillage (Field 2).
Both fields included a complete range of landscape

positions from summit to footslope, but relief on Field 2

(12 m) was greater than on Field 1 (6 m).
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The claypan soils found at the study fields were

typical of major land resource area (MLRA) 113, the

central claypan area (USDA, 1981). The soils are

primarily of the Mexico (fine, smectitic, mesic aeric

Vertic Epiaqualfs), Adco (fine, smectitic, mesic aeric

Vertic Albaqualfs), and Leonard (fine, smectitic, mesic,

Vertic Epiaqualfs) series. These soils were formed in

moderately-fine textured loess over a fine textured

pedisediment and are classified as somewhat poorly

drained. Surface textures range from silt loam to silty

clay loam. The namesake ‘‘claypan’’ argillic horizon has

an abrupt upper boundary with at least 100% more clay

than in the horizon above. Texture of this horizon,

which commonly contains as much as 50 to 60%

smectitic clay is typically classed as silty clay loam, silty

clay, or clay. Within each study field, topsoil depth

above the claypan (TD, depth to the first B horizon)

ranged from less than 10 cm to greater than 100 cm.

Data Collection

The ECa data for each field were collected over

two consecutive days in the fall of 2005. At the time of

data collection, soil temperature at an 8 cm depth was

approximately 13uC and average soil water content was

27%. The ground surface was moist but trafficable, with

about 2 cm of rain having occurred three days

previously. The EM38 and DUALEM-2S were com-

bined with a wheeled cart, data acquisition computer,

and differential GPS (DGPS) system for mobile data

collection, as described by Sudduth et al. (2001).

Measurements were obtained with the DUALEM-2S

on an approximate 10-m transect spacing (Fig. 2).

Because of time constraints, the Veris 3150 and Geonics

EM38 were operated on transects spaced 20-m apart

aligned with every other DUALEM-2S transect. Soil

ECa (mS/m) was recorded on a 1-s interval, correspond-

ing to a 4-m to 6-m data spacing. Data obtained by

differential GPS was associated with each sensor reading

to provide positional information with an accuracy of

1 m or better. Raw ECa data were offset by 1 s to

compensate for the position of the GPS antenna ahead

of the sensor and for time lags in the data acquisition

system (Sudduth et al., 2001).

The TD calibration dataset was obtained as part

of a previous investigation (Sudduth et al., 2003). The

calibration sites (19 in Field 1 and 15 in Field 2; Fig. 2)

were chosen to provide ECa values distributed similarly

to those in the ECa map, with the additional goal of

including samples from all the landscape positions and

soil map units present in the field. Cores were examined

within the field by a skilled soil scientist for TD

determination. Identification of the top of the argillic

horizon (i.e., TD) was based on a combination of the

moist consistency of the soil, resistance to knife

insertion, and gloss of the core surface (Myers et al.,

2007). At two of the 34 calibration sites, the increase in

clay was not great enough to define an argillic horizon;

at these locations TD was taken as the depth to the first

layer with notable clay content increase.

Additional locations within the two fields where

TD was previously measured using the same procedures,

but by other scientists, were used as a validation dataset

(Fig. 2). These sites were established by Myers (2005) on

Field 1 in a regular grid (n 5 70) and by Sudduth et al.

(2000) on Field 2 as a single transect (n 5 25).

Data Analysis

ECa values corresponding to calibration and

validation point locations were extracted from each

ECa dataset by point kriging using GS+ version 5.1.1

(Gamma Design Software, Plainwell, MI). For each ECa

dataset-field combination, the best semivariogram mod-

el – exponential or spherical in all cases – was used in

kriging. All semivariograms fit the ECa data very well,

with r2 $ 0.98 and nugget semivariance # 15% of total

semivariance in all cases.

Figure 2. Map of the two study fields with calibration

and validation points and DUALEM-2S data collection

transects. EM38 and Veris 3150 data were collected along
every second transect.
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To implement the model inversion approaches that

included TD calibration point data, a Visual Basic

program was written. This program determined param-

eter values and calibration statistics for TD estimation

of each field-ECa dataset combination using Eq. (12)

and the appropriate cumulative response function (Eqs.

(6)–(10)). Calibrations were also developed for a

combined dataset including all points from both fields.

Model inversion solutions that did not include TD

calibration data were obtained by nonlinear optimiza-

tion based on Levenberg-Marquardt least squares using

the NLPLM subroutine in SAS PROC IML.

In regression we modeled TD as an inverse

function of ECa plus an intercept term. In previous

research (Doolittle et al., 1994) we compared several

linear and nonlinear equation forms and found an

exponential equation to be the best estimator of

claypan-soil TD. In a subsequent study (Sudduth et

al., 2001) we determined that an exponential equation

with an exponent of 21 (i.e., ECa
21) provided results

almost as good as those obtained with the best-fit

exponent value. We have used this modeling approach.

This model was implemented as a linear regression

on ECa
21 using PROC REG in SAS version 9.1 (SAS

Institute, Inc., Cary, N.C.). Statistical analyses combin-

ing multiple ECa
21 datasets were carried out using SAS

PROC STEPWISE.

Results and Discussion

Single-Variable Model Inversion

The most accurate TD calibrations by model

inversion were obtained with ECa-Dsh (PRP) data

(Table 1, Fig. 3). The same trend was seen for each

field separately and for both fields combined. With

ECa-Dsh data, model-optimized values of ECaT and ECaS

were reasonable, falling within the range of profile ECa

data collected on Field 2 in another project (Sudduth et

al., 2000). These layer ECa values were also reasonable

when using data from the EM38, which has a similar

depth response (Fig. 1). Accuracies of the ECa-Ddp

calibrations were better than the ECa-em calibrations

for Field 2 and the combined dataset, while ECa-em

calibrations were better for Field 1. However, the ECa-Ddp

calibrations optimized unrealistically, at or near ECaT 5 0

(Table 1). This dataset is the most strongly weighted to

deeper parts of the soil profile, with only about 45% of its

cumulative response coming from above 1.5 m (Fig. 1).

As determined by coring, the soil profiles on these fields

exhibited paleosols (soils that formed in the past and were

subsequently buried under new parent material) between 1

and 1.5 m at some, but not all locations, as well as glacial

till at approximately 2 to 3 m (unpublished data). As a

paleosol or till would likely have ECa different from other

subsoil layers, the presence or absence of these layers

could result in spatially variable ECaS, violating model

assumptions. Because ECa-Ddp readings would be most

strongly affected by ECa deep in the profile, results with

this dataset would be affected the most. Calibrations with

the Veris 3150 datasets also tended toward unrealistically

low values for ECaT and higher RMSE (Table 1). The

responses of both Veris readings, particularly Vsh, are

strongly weighted to the surface soil (Fig. 1). Soil profiles

in these fields exhibit spatially variable topsoil clay

content (CV 5 22% for the calibration points in this

study), which would also imply spatially variable ECaT,

again violating model assumptions. This could have been

caused, for example, by tillage mixing of argillic horizons

into the more silty topsoil material, especially in soils with

small TD. The surface-weighted response of the Veris

sensor would make those datasets most susceptible to

spatial variation in ECaT.

The relationship of topsoil depth to ECa
21 was

stronger for Field 2 than for Field 1 (Fig. 3(A)). While

calibration points for Field 2 closely fit an inverse

function, the calibration points on Field 1 with

measured topsoil depths between 15 and 40 cm exhibited

more scatter. In particular, several of the points further

removed from the general trend were ones where a

paleosol was found through soil coring (circled points in

Fig. 3(A)). The presence of this additional layer deep in

the profile apparently affected the ECa-TD relationship.

Additionally, the calibration points were not evenly

distributed across the ECa range of interest for Field 1,

with only one point having TD above 50 cm. Calibra-

tion point selection might be improved using the

approach proposed by Lesch et al. (1995), who

described an algorithm for selecting optimum locations

for ECa calibration points.

The two fields in this study had similar soils and

were managed similarly, and the ECa data for both

fields were collected within 4 d and under similar

conditions. Because of this similarity and because we

desired a general calibration to TD, we pooled data

from both fields for further analysis and validation.

Although calibration results for Field 2 were consider-

ably worse with the combined dataset, calibration

results for Field 1 were similar for combined and field-

specific datasets. Performance of the combined-dataset

TD model was assessed through application to the

combined validation set of measured TD data from both

Fields 1 and 2. Similar to calibration results, lowest

validation RMSE was obtained using ECa-Dsh, followed by

ECa-Ddp and ECa-em (Table 1). All models provided results

with relatively low bias errors ranging from 4 to 7 cm in

this separate validation dataset. As in the calibration

results, the largest deviations of ECa-Dsh-estimated TD
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Table 1. Parameter values and calibration and validation set statistics for estimation of claypan soil topsoil depth (TD)

by inversion of ECa response profiles and by linear regression on ECa
21.

Location

ECa

source

Model inversion solution Regression solution

ECaT

(mS/m)

ECaS

(mS/m)

Calibration Validation

b0
* b1

*
Calib.

RMSE (cm)

Validation

RMSE

(cm)

Bias

(cm)

RMSE

(cm)

Bias

(cm)

RMSE

(cm)

Bias

(cm)

Field 1 ECa-Vsh 0 89 25.7 20.1 25.1 0.1 27.8 52.4 26.8 25.1 0.4

ECa-Vdp 0 40 22.5 20.9 24.4 1.3 5.8 590.8 23.1 23.9 0.1

ECa-em 18 65 17.3 20.4 24.2 2.2 287.8 5,946 18.3 23.6 2.9

ECa-Dsh 17 66 15.5 0.1 22.2 2.4 264.6 4,179 15.6 21.8 2.2

ECa-Ddp 0 70 21.5 23.3 23.3 2.5 2119 9,681 18.4 22.6 3.8

Field 2 ECa-Vsh 6 112 31.5 1.8 22.8 12.3 231.2 795.7 30 22.7 10.0

ECa-Vdp 12 46 22 29.8 13.8 22.8 253 2,835 15.8 19.1 6.6

ECa-em 20 75 17.6 20.1 13.3 25.5 2116.2 8,431 18.5 12.7 23.6

ECa-Dsh 25 71 11.4 20.1 13.4 23.6 2100.3 6,461 12.7 12.1 21.7

ECa-Ddp 1 75 14.4 21.8 19.7 26.9 2161.1 12,986 12.7 15.7 25.0

Combined ECa-Vsh 0 143 30.8 0 25.3 5.8 31.5 64.1 31.9 25.3 4.6

ECa-Vdp 0 54 26.6 20.2 24.9 7.4 8.2 721.8 28.3 24.1 5.6

ECa-em 18 69 20.9 21.6 25.1 3.6 291 6,525 21.2 24.5 5.6

ECa-Dsh 19 69 17.5 20.6 22.4 4.1 276.5 4,979 17.6 21.9 5.0

ECa-Ddp 0 73 19.7 20.1 25 5.8 2144.2 11,543 17 22.4 4.2

* b0 and b1 are coefficients of the equation TD 5 b0 + b1(ECa
21).

Figure 3. Relationship of ECa-Dsh reading to measured topsoil depth (a) and calibration set results using inversion and

regression methods (b). Calibration points identified as having a paleosol are circled in part a.
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from the 1:1 line were for points with measured TD

between 15 and 40 cm (Fig. 4(A)).

Single-Variable Regression

The accuracies of TD estimates by linear regression

on ECa
21 (i.e., TD 5 b0 + b1 ECa

21) were very similar to

those obtained with the inversion method (Table 1). The

ECa-Dsh reading gave the best results for each field

separately, while ECa-Ddp was only slightly better for the

combined dataset. Estimates of TD for individual points

in the calibration dataset were very similar between the

two methods (Fig. 3(B)). Regression-based results in the

validation set were very similar to those obtained by

model inversion (Table 1, Fig. 4(B)). We expected the

inversion method to perform better, but its accuracy may

have been hindered by the required assumption of by-

depth uniformity of ECaT and ECaS within the two

defined layers. This assumption was violated to a greater

or lesser degree at a number of the calibration sites used in

this study (Myers, 2008).

Figure 4. Validation results for most accurate estimations of topsoil depth using single-variable model inversion (a),

single-variable regression (b), multiple-variable model inversion (c), and multiple-variable regression (d).
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Multiple-Variable Regression

Stepwise regression analysis included all ECa
21

variables as candidates for entry into the model. Only two

ECa
21 terms were statistically significant, with the two

best models including the inverse of ECa-Dsh and either

ECa-Vsh or ECa-Vdp (Table 2). Figure 3(B) shows that the

addition of the Veris reading as a second variable removed

much of the scatter in the Field 1 calibration data,

compared to single-variable regression or model inver-

sion. However, validation set results with the multiple-

variable regression approach (Table 2, Fig. 4(D)) were

not much better than the best single-variable results

(Table 1). Evidently, calibrations based on two ECa

variables were somewhat prone to overfitting the calibra-

tion data, thus reducing validation set performance.

Additional stepwise regressions allowed only the

multiple channels within a single instrument (i.e.,

ECa-Dsh and ECa-Ddp; ECa-Vsh and ECa-Vdp) to enter

the model. Neither DUALEM-2S channel was statisti-

cally significant (p $ 0.15) when both were included in

the model, so a two-variable calibration was not

appropriate with those data. The calibration with

ECa-Vsh and ECa-Vdp (Table 2) was better than all

single-variable calibrations (Table 1), but validation

performance was worse than the two best single-variable

calibrations, which used ECa-Dsh and ECa-Ddp (Tables 1

and 2).

Multiple-Variable Model Inversion with

Calibration Data

The most accurate TD calibration from multiple-

variable model inversion was obtained from the two

channels of the DUALEM-2S sensor (Table 3,

Fig. 3(B)). The accuracy of this calibration was slightly

better than that obtained by model inversion with

ECa-Dsh data alone. A calibration that also included

ECa-em along with ECa-Dsh and ECa-Ddp gave similar

accuracy. The optimized layer conductivity values (Ta-

ble 3) were reasonable for these calibrations and were

similar to those obtained for the best single-variable models

(Table 1). Although the best multiple-variable calibration

results were better than those with a single variable, best

validation results (Fig. 4(C)) were similar between the two

approaches (compare Table 3 and Table 1). Both calibra-

tion and validation errors were lower with multiple-

variable regressions compared to multiple-variable inver-

sions (compare Table 2 and Table 3).

Multiple-variable inversion calibrations that in-

cluded one Veris channel along with other data were of

medium accuracy, while the calibration based on the

two Veris channels alone was of lower accuracy. As with

the single-variable calibrations described earlier, results

with the Veris instrument suffered from its response

being too strongly weighted to the surface soil (Fig. 1).

Additionally, layer conductivity values obtained with

Table 2. Calibration and validation set statistics for estimation of claypan soil topsoil depth (TD) by regression on

multiple ECa variables.

Calibration equation Calibration RMSE (cm) Validation RMSE (cm) Validation bias (cm)

TD 5 6,755 ECa-Dsh
21 2 219.3 ECa-Vsh

21 2 87.65 11.6 19.8 3.1

TD 5 8,254 ECa-Dsh
21 2 1,003 ECa-Vdp

21 2 108.7 13.0 19.8 3.3

TD 5 3,398 ECa-Vdp
21 2 827.0 ECa-Vsh

21 + 3.95 14.8 23.9 3.3

Table 3. Calibration and validation set statistics for estimation of claypan soil topsoil depth (TD) by inversion of models

incorporating multiple ECa variables.

ECa source

Calibration set Validation set

ECaT (mS/m) ECaS (mS/m) RMSE (cm) Bias (cm) RMSE (cm) Bias (cm)

All variables 33 39 19.7 1.8 23.9 6.6

ECa-em, ECa-Dsh, ECa-Ddp 18 69 17.8 20.9 23.4 3.4

ECa-Dsh, ECa-Ddp 15 70 16.5 21.4 22.2 2.7

ECa-Vsh, ECa-Vdp 0 56 26.8 0.6 25 7.7

ECa-Dsh, ECa-Vsh 23 52 19.1 4.1 22 7.5

ECa-Dsh, ECa-Vdp 16 47 23.1 20.9 25.7 6.1
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the Veris calibrations seemed unrealistic in some cases.

Investigation of Veris performance under more con-

trolled conditions is needed to resolve this issue.

Multiple-Variable Model Inversion without

Calibration Data

This approach yielded unstable results for this

claypan-soil TD dataset. Many of the layer conductiv-

ities calculated were unreasonably large or small. This is

in contrast to results with the same approach reported in

Saey et al. (2009), where layer ECa values were noted to

be reasonable with relatively small standard deviations

(#21 mS/m). Poor performance in this study could be

attributed to the fact that at least three independent ECa

measurements are required to calculate the two layer

conductivities and TD at each measurement point.

Although five ECa datasets were available in this study,

principal component analysis (PCA) showed that these

contained only two statistically independent variables,

as two principal components described over 99% of the

variance in the dataset. A PCA to verify the presence of

the required number of statistically independent ECa

variables would be a useful screening procedure before

attempting this type of model inversion analysis.

TD Estimation Accuracy and Limitations

In general, TD estimation results in this study were

comparable with those reported in other research. For

the dataset containing both fields, the best validation-set

RMSE values were 22 cm based on a single ECa variable

and 20 cm based on multiple ECa variables. Saey et al.

(2008, 2009) reported validation-set RMSE values from

22 to 26 cm when using different datasets and model

inversion approaches. In our work estimating claypan-

soil TD (Kitchen et al., 1999; Sudduth et al., 2001;

Sudduth et al., 2003), best single-field calibration RMSE

values ranged from 6 to 18 cm depending on the specific

field. In this study, the lowest field-specific calibration

RMSE was 12 cm.

As measured by RMSE, errors in TD using these

techniques were on the order of 20 cm. Although this is

not a small absolute error, the range in TD on many

claypan-soil fields is greater than 100 cm. Thus, these

techniques should be sufficient, for example, to divide a

field into a few (i.e., 3–5) TD classes for interpretation of

crop yield or other response variables. Improved

accuracy would be highly desirable for other uses, such

as developing input application algorithms based on TD

values. Although the calibration techniques used here

did a reasonable job of modeling the overall TD-ECa

relationship, improvement may require new approaches

that better account for those deviations from the overall

relationship that occur from place to place within fields.

In both the model-based and regression-based

validation sets, as in the calibration set, there were a few

large outliers, mostly from Field 1. Applying the best

single-variable inversion calibration (ECa-Dsh) to Field 1,

TD was underestimated by more than 25 cm at 7 points

and overestimated by more than 25 cm at 11 points.

Similar results were obtained from the best calibrations

obtained with the other methods examined (Fig. 4).

Examination of the ECa-Dsh map (Fig. 5) for the portion

Figure 5. Map of ECa-Dsh for the portion of Field 1 containing validation points. Upward pointing triangles have TD

overestimation (by model inversion using ECa-Dsh) . 25 cm, while downward pointing triangles have TD underestimation

. 25 cm. Filled black symbols are validation points, while open black symbols are calibration points.
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of Field 1 containing the validation points showed that

large underestimations of TD (represented by down-

ward pointing triangles in Fig. 5) were generally in areas

where ECa changed significantly over short distances. In

these locations, the process of interpolating the ECa

data may not have accurately represented short-range

variability, thus causing a lack of correspondence

between ECa and TD data. Additionally, the high

topsoil CEC found in that same area of the field

(Kitchen et al., 2005) could have increased the ECaT

relative to other parts of the field, causing TD to be

underestimated.

On the other hand, large overestimations of TD

(upward pointing triangles in Fig. 5) had an obvious

spatial pattern, following an area of low ECa that also

included calibration points where TD was overestimated

by large amounts (Fig. 3(B)). Two linear features of low

ECa-Dsh in Fig. 5 converge into a single linear feature

moving from south to north. The feature to the left

(west) corresponds to the current drainage channel while

the feature on the right appears to be a filled channel.

The observed TD for validation points measured within

this filled channel is biased by contributions of clay from

severely eroded upslope areas. These locations had

depositional argillic horizons near the surface while the

pedogenic claypan and/or paleosol were deeper in the

profile. Topsoil depth was recorded as the depth to the

first argillic horizon. These depositional argillic horizons

did not have the very high clay content, firm moist

consistency, and moderate to strong physical structure

seen in claypan horizons and which contributes to

increased ECa (Myers, 2008), and thus led to TD

overestimation.

Considering these spatially structured variations in

estimation accuracy, it seems reasonable that a modeling

approach allowing ECaT and ECaS to vary spatially

might provide better TD estimation results. Unfortu-

nately, as described above, this approach was not

feasible with the available ECa data. Collection of data

with another sensor, or perhaps by operating one of the

existing EM sensors at another height above ground,

should be investigated. Additionally, a more complete

understanding of how ECa varies with depth in claypan

soils and the effects of mineralogy and soil formation on

those variations might improve TD estimation. Layer-

based measurements of ECa as described by Myers

(2008) may facilitate further research in this direction.

Conclusions

Inversion of a two-layer soil model using a single

ECa data source successfully estimated topsoil depth

variations on claypan-soil fields in central Missouri.

Most accurate results were obtained with those ECa

sensors having a moderately deep response function.

Inversion estimates were of similar accuracy to those

obtained from linear regression using ECa
21 as the

independent variable. In terms of validation RMSE,

accuracy improvements with model inversions and

regressions incorporating multiple ECa terms were less

than 10% when compared to those using a single

variable. Multiple-variable inversion solutions were
slightly better than multiple-variable regression results,

perhaps because the models based on instrument

response functions provided a non-linear combination

of multiple ECa data that was more physically accurate

than the linear combination provided by multiple linear

regression on ECa
21 terms. Estimation errors in a

validation set exhibited a spatial structure that appeared

to be related to variations in soil properties known to
affect ECa, such as CEC or clay content. A model

solution that allows layer conductivities to vary

spatially, rather than being constrained to be spatially

homogeneous, should be pursued as a potential ap-

proach for improved TD estimation.
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