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CALIBRATION METHODS FOR SOIL PROPERTY ESTIMATION

USING REFLECTANCE SPECTROSCOPY

K. S. Lee,  K. A. Sudduth,  S. T. Drummond,  D. H. Lee,  N. R. Kitchen,  S. O. Chung

ABSTRACT. Optical diffuse reflectance sensing is a potential approach for rapid and reliable on‐site estimation of soil
properties. One issue with this sensing approach is whether additional calibration is necessary when the sensor is applied
under conditions (e.g., soil types or soil moisture conditions) different from those used to generate an initial calibration, and
if so, how many sample points are required in this additional calibration. In this study, these issues were addressed using data
from ten fields in five states in the U.S. Corn Belt. Partial least squares (PLS) regression was used to develop calibrations
between soil properties and reflectance spectra. Model evaluation was based on the ratio of standard deviation to RMS error
(RPD), a statistic commonly used in spectral analysis. When sample data from the field where calibrations were to be applied
(i.e., test field) were included in the calibration stage (full information calibration), RPD values of prediction models were
increased by an average of 0.55 (from 1.08 to 1.63) compared with results from models not including data from the test field
(calibration without field‐specific information). Including some samples from the test field (hybrid calibration) generally
increased RPD to 90% of that from full information calibration (average increase = 0.49) by using data from 8 to 20 soil cores,
with little further improvement given additional data. Using test field points as a bias adjustment (two‐stage calibration)
increased RPD by an average of 0.29 with two to six sample points, a finding that was confirmed by Monte Carlo simulation.
These results show the importance of including in a calibration set samples similar (i.e., obtained from the same or similar
fields) to those in the test set. These similar samples could be included directly in the calibration or could be used to implement
a post‐calibration bias adjustment. Although results were more accurate with the recalibration approach, the bias adjustment
approach was more efficient computationally and required less data. Thus, either might be preferred depending on specific
circumstances.

Keywords. Calibration methods, Near‐infrared, Reflectance spectroscopy, Sensors, Soil properties.

recision agriculture is a management system where
application of agricultural chemicals such as fertil‐
izers, pesticides, and herbicides is matched to actual
needs point‐by‐point within fields. This approach

can provide economic benefits to farmers and protection of
the soil environment from excessive chemical application.
For precision agriculture to meet its goals, site‐specific quan‐
tification of soil physical and chemical properties that affect
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soil quality and crop production is necessary. Many of these
properties can change on a fine spatial scale, making tradi‐
tional laboratory methods impractical due to time and cost of
the sampling and analytical procedures. Another approach is
needed to provide accurate, reliable, and timely characteriza‐
tion of within‐field variability at a reasonable cost. Diffuse
reflectance spectroscopy (DRS) is a promising, nondestruc‐
tive technique that may fulfill these requirements. Many in‐
vestigators have successfully estimated soil physical and
chemical properties in the laboratory using DRS in the visible
(VIS; 400‐700 nm), near‐infrared (NIR; 700‐2500 nm), and
mid‐infrared (MIR; 2500‐25000 nm) wavelength ranges. In
addition, several DRS soil sensors have been successfully
used in field settings.

To date, most DRS soil sensing research has been carried
out in the VIS, NIR, or combined VIS‐NIR wavelength
ranges (Viscarra Rossel et al., 2006). Total C in arable soils
has been estimated with NIR or VIS‐NIR spectroscopy
(Chang et al., 2001; Confalonieri et al., 2001; McCarty et al.,
2002; Mouazen et al., 2007), producing R2 values from 0.73
to 0.95. This technique has also been used to determine soil
organic C (SOC) (Krishnan et al., 1980; Dalal and Henry,
1986; Sudduth and Hummel, 1991; Reeves and McCarty,
2001; Shepherd and Walsh, 2002; Islam et al., 2003; Moua‐
zen et al., 2007) and to estimate soil properties such as cation
exchange capacity (CEC), Ca, K, texture (sand, silt, and clay
fractions), Mg, pH, and total N (Sudduth and Hummel, 1993;
Ben‐Dor and Banin, 1995; Shepherd and Walsh, 2002; Coz‐
zolino and Moron, 2003; Islam et al., 2003; Nanni and De‐
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matte, 2006). In a previous study (Lee et al., 2009), we
combined VIS‐NIR reflectance sensing with partial least
squares (PLS) regression to estimate surface and profile soil
properties and to identify wavelength bands important for es‐
timating soil properties. Soil samples were obtained from ten
fields in five states of the U.S. Corn Belt. Good estimates of
SOC, CEC, Ca, and texture fractions were obtained for both
surface and profile datasets. Viscarra Rossel et al. (2006) pro‐
vided a comprehensive review of soil DRS applications, in‐
cluding accuracy statistics.

Proper design and selection of calibration sets and meth‐
ods is important for obtaining the most precise and accurate
calibration results (Westerhaus et al., 2004). Three types of
calibration sets can be used: closed population (entire sample
set to be analyzed is available at the time of calibration devel‐
opment), open population (some samples are not available at
the time of calibration), and historical databases (calibration
developed from previous experiments with variation in in‐
strumentation and methodology). Westerhaus et al. (2004)
stated that for an open population, the only method applica‐
ble for real‐time prediction, one way to ensure accurate es‐
timation of a new sample was to have one or more very
similar samples in the calibration database. Sudduth and
Hummel (1996) reported that the geographic range over
which a set of soil samples was obtained affected the NIR es‐
timation accuracy of SOC, CEC, and soil moisture. Specifi‐
cally, prediction of SOC and soil moisture became less
accurate as soil samples from a wider geographic range were
considered. Using one‐field‐out validation, an approach
mimicking the prediction problems encountered in real‐time
measurement, Christy (2008) obtained best results for organ‐
ic matter, with an RMSE of 0.52% and an R2 of 0.67. Predic‐
tion accuracy and the percentage of locations with accurate
predictions increased as the number of fields in the calibra‐
tion set increased, but the best one‐field‐out results had 30%
higher error than calibrations that included data from all
fields. Brown et al. (2005) applied VIS‐NIR PLS regression
modeling to soil samples obtained from six sites with similar
soils and concluded that a stable, effective PLS calibration
could be developed for similar soils from the same physio‐
graphic region. However, when they attempted to predict soil
C for each of the six sites using a calibration developed from
the remaining five sites, the models failed completely at two
of the six sites and gave inconsistent results at a third site.
This was true despite pre‐screening for spectral similarity.

Previous research has shown that the DRS calibration ap‐
proach can have a significant effect on the accuracy of soil
property estimates. Specifically, choice of a calibration data‐
set requires consideration of the trade‐off between the accu‐
racy required and the resources available to develop the
calibration.  If the highest accuracy is needed and resources
are not a limitation, then individual field calibration with a
significant number of laboratory‐measured calibration sam‐
ples will likely provide the best results. On the other hand, re‐
source limitations or other practicality issues may mean that
it is not possible to obtain any within‐field calibration sam‐
ples, requiring that a global or “factory” calibration be used.
In between, there is likely an interplay between how many
within‐field calibration samples are available and the best
methodology for incorporating those samples.

Although NIR or VIS‐NIR soil property estimation accu‐
racies have been widely reported in the literature, very few
studies have compared multiple calibration approaches.

Thus, our goal was to evaluate several calibration methods
along the continuum between within‐field and global calibra‐
tion. Specific objectives were to:

� Evaluate the reduction in accuracy of soil property esti‐
mates when test‐field samples are not included in de‐
veloping a calibration.

� Compare different methods for including samples from
a test field when developing a calibration.

� Determine the effect of varying numbers of test‐field
calibration samples.

MATERIALS AND METHODS
CALIBRATION METHODS

Four different calibration methodologies based on PLS
regression were compared using a DRS dataset that was
subdivided into six parts as described below. These methods
were:

Method 1: Full Information Calibration. This method
used data from all six datasets to develop the initial calibra‐
tion equation. The calibration equation was then used to cal‐
culate separate prediction statistics for each of the six
datasets. This method was included to provide an upper
bound on prediction accuracy for the different soil properties,
against which the other methods could be compared.

Method 2: Calibration without Field‐Specific Infor‐
mation. This method simulated the application of a “factory‐
calibrated” sensor to soils different from those used to
develop the initial calibration. A calibration was developed
using five of the six datasets and prediction statistics were
calculated for the remaining dataset, which we will refer to
as the “test” dataset. This process was repeated six times to
obtain prediction statistics for all datasets.

Method 3: Hybrid Calibration. This method was inter‐
mediate between methods 1 and 2, simulating the addition of
a small number of field‐specific calibration points to an ini‐
tial general calibration. PLS calibrations were developed as
in method 2, but also included a number of additional calibra‐
tion points (soil cores) selected at random from the test data‐
set. The number of additional points was iteratively increased
from zero (equivalent to method 2) to the maximum number
of points in the dataset (equivalent to method 1). Prediction
statistics were calculated as for method 2.

Method 4: Two‐Stage Calibration with Bias Correc‐
tion. Observing that the difference between method 1 and
method 2 was principally a bias shift (fig. 1) led us to develop
method 4. This method was similar to method 3, but instead
of directly including the points randomly selected from the
test dataset in the PLS calibration, they were used to adjust
the results of the calibration. The advantage of this method
over method 3 was that it did not require a re‐calculation of
the PLS regression for each new test dataset. The first stage
of this method was the PLS calibration of method 2. The sec‐
ond stage was a linear bias correction where the general cal‐
ibration was shifted using laboratory data from a number of
calibration points in the test dataset. Similar to method 3, the
number of calibration points used in the bias correction was
iteratively increased to create a suite of method 4 estimates,
followed by calculation of prediction statistics.

SOIL AND SPECTRAL DATA
Soils used in this study, also used by Lee et al. (2009), were

obtained from ten fields managed in a corn‐soybean rotation,
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Figure 1. Estimated vs. laboratory‐measured CEC for an example data‐
set, showing that the difference between method 1 and method 2 calibra‐
tions could be represented reasonably well by a linear bias shift.

two each in Missouri (MO), Illinois (IL), Michigan (MI),
South Dakota (SD), and Iowa (IA), as described by Sudduth
et al. (2005). Fields were selected in part due to their relative‐
ly high degree of within‐field soil and production variability,
and to represent the range of climate, soil, and landscape
characteristics  typical of the north‐central U.S. Soils exhib‐
ited differences in texture, parent material, and mineralogy.
For example, prevailing surface soil texture varied across the
research sites as follows: loam (MI), loam to clay loam (IA),
silt loam to silty clay loam (IL, MO, and SD). Subsoil texture
was even more variable, ranging from loamy sand at the MI
fields to clay at the MO fields.

Soil samples were collected from 12 to 20 locations in
each field. Locations were chosen with the goal of including
samples from all the landscape positions and soil map units
present in each field. One 4.0 cm diameter, 120 cm long core
sample was obtained at each site using a hydraulic soil coring
machine. Cores were examined and segmented by pedogenic
horizon. The number of horizon samples per core varied from
1 to 6, with a median of 3. Soil texture (clay, silt, and sand
fractions, %), cation exchange capacity (CEC), Ca, and Mg
(cmol kg‐1), organic C (%), total N (%), and pH were deter‐
mined by laboratory analysis, using procedures described by
Sudduth et al. (2005). Descriptive statistics of the laboratory‐
measured soil properties are given in table 1.

Spectra of air‐dried and 2 mm sieved soil were obtained
in the laboratory using a spectrometer (FieldSpec Pro FR,

Analytical Spectral Devices, Boulder, Colo.). Approximate‐
ly 15 cm3 of soil was packed in a glass‐bottomed sample cup
for reflectance determination. The sample was illuminated
through the glass by a halogen lamp, and the reflected light
from an approximately 12 mm diameter area was transmitted
to the spectrometer through a fiber optic bundle. Each soil
spectrum was obtained as the mean of ten scans. The
spectrometer data collection software automatically adjusted
the data for dark current variations using dark current scans
obtained at the beginning of each data collection session and
at least every 30 min thereafter. A Spectralon (Labsphere,
Inc., North Sutton, N.H.) reflectance standard was scanned
after every ten soils and used to convert the raw spectral data
to decimal reflectance.

Although the spectrometer was capable of collecting data
from 350 to 2500 nm, only NIR data from 1770 to 2500 nm
were used in this study. We previously determined that soil
property estimates using this reduced wavelength range had
similar accuracy to those obtained with the full range of the
spectrometer (Lee et al., 2009). Other researchers have also
reported that wavelengths in the NIR range were most predic‐
tive of soil properties (Sudduth and Hummel, 1991; Hender‐
son et al., 1992; Sudduth and Hummel, 1993; Chang et al.,
2001).

ANALYTICAL PROCEDURES
Reflectance  data were preprocessed to improve stability

of the regression. Each spectral scan was (1) transformed
from reflectance to absorbance (log10[1/reflectance]),
(2)�mean‐normalized  (i.e., divided by its mean value), and
(3) smoothed with an 8‐point (24 nm) moving average to sim‐
ulate the wider bandwidth likely in a real‐time sensor.

PLS regression, implemented in Unscrambler version 9.1
(CAMO, Inc., Oslo, Norway), was used to develop calibra‐
tion models relating soil properties and the preprocessed re‐
flectance spectra. PLS creates a new set of variables (called
factors) that are uncorrelated and that explain variation in
both response and predictor variables (Beebe and Kowalski,
1987). A key step in PLS regression is selecting the optimal
number of factors to best represent the calibration data with‐
out overfitting. In this analysis, a 10‐segment cross‐
validation approach was used to choose the optimum number
of PLS factors. Additional details were previously reported
(Lee et al., 2009).

Model evaluation was based on coefficient of determina‐
tion (R2) and the ratio of standard deviation to root mean
square error of prediction (RMSEP), commonly termed RPD.
Being a normalized statistic, RPD is suggested instead of
RMSEP when comparing results from datasets containing

Table 1. Means and standard deviations (SD) of laboratory‐determined soil properties.

Soil Property

Missouri Illinois Michigan South Dakota Iowa

Mean SD Mean SD Mean SD Mean SD Mean SD

Clay fraction (%) 34.7 12.4 29.7 6.3 14.3 6.2 26.4 5.6 25.0 7.1
Silt fraction (%) 60.8 10.9 58.9 9.2 32.9 18.9 51.6 12.3 36.3 8.5

Sand fraction (%) 4.5 3.8 11.3 11.6 52.8 23.1 22.0 16.0 38.6 15.0
Ca (cmol kg‐1) 11.4 3.8 14.5 6.4 5.0 2.5 32.4 13.6 28.6 16.5
Mg (cmol kg‐1) 4.0 2.0 5.3 1.9 1.0 0.5 8.5 2.9 4.0 1.6

CEC (cmol kg‐1) 24.0 7.9 20.7 7.0 9.8 4.2 22.0 7.5 22.6 8.4
SOC (%) 0.65 0.40 0.86 0.71 0.63 0.55 1.09 0.89 1.10 0.89

Total N (%) 0.08 0.03 0.10 0.06 0.06 0.05 0.11 0.08 0.12 0.08
pH 5.0 0.7 6.6 0.8 5.3 0.6 7.6 0.7 6.4 1.0
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Table 2. RPD values obtained with method 1. Bold entries indicate good estimation (RPD > 2.0).
Prediction Dataset Clay Silt Sand Ca Mg CEC SOC pH Total N Mean

MO 1.88 1.41 0.42 0.92 1.58 1.68 1.76 1.46 0.95 1.34
IL 1.38 1.03 1.07 1.35 1.29 1.86 3.50 1.68 2.55 1.75
MI 1.16 1.94 1.96 0.52 0.40 1.10 2.80 1.40 2.24 1.50

SD1 1.47 1.16 1.24 1.54 1.23 2.17 3.83 1.38 2.69 1.86
SD2 1.79 0.96 1.10 1.41 1.20 2.38 2.99 1.16 2.38 1.71
IA 1.69 1.12 1.44 2.00 0.88 1.75 2.54 2.04 1.38 1.65

All combined 2.24 1.88 2.11 2.22 1.86 2.27 2.73 2.51 1.71 2.17

Table 3. R2 values obtained with method 1. Bold entries indicate good estimation (R2 > 0.8).

Prediction Dataset Clay Silt Sand Ca Mg CEC SOC pH Total N Mean

MO 0.74 0.60 0.03 0.32 0.60 0.66 0.78 0.54 0.33 0.51
IL 0.48 0.19 0.30 0.54 0.42 0.71 0.92 0.72 0.85 0.57
MI 0.57 0.75 0.74 0.48 0.05 0.54 0.88 0.49 0.81 0.59

SD1 0.57 0.47 0.54 0.59 0.41 0.81 0.96 0.49 0.91 0.64
SD2 0.70 0.32 0.44 0.52 0.55 0.89 0.97 0.47 0.95 0.65
IA 0.67 0.49 0.60 0.75 0.24 0.68 0.86 0.76 0.50 0.62

All combined 0.80 0.72 0.78 0.80 0.71 0.81 0.87 0.84 0.66 0.78

different degrees of variability, as is the case with multiple
soil properties and different test fields (Malley et al., 2004).
Values of RPD above 2.0 and R2 above 0.80 have been con‐
sidered indicative of good accuracy in soil analysis (Chang
et al., 2001; Lee et al., 2009).

For analysis, data from the two fields in each of MO, IL,
IA, and MI, which were located less than 2 km from each oth‐
er and had similar soils, were pooled. The two SD fields,
which were geographically separated and had considerably
different soils, were kept separate, resulting in six prediction
datasets: MO, IL, IA, MI, SD1, and SD2.

RESULTS AND DISCUSSION
METHOD 1 AND METHOD 2

Tables 2 and 3 show method 1 RPD and R2 values obtained
for each soil property and prediction dataset. Also shown are
statistics for the combined dataset, as previously presented by
Lee et al. (2009). The generally lower RPD and R2 values of
the individual prediction datasets illustrate the difficulty of

obtaining good field‐specific estimates, particularly when
the within‐field variation in the measured property is low
(table 1). Across the individual prediction datasets, there
were consistent trends when comparing these two accuracy
measures, with only one dataset being classified as “good”
(RPD > 2.0; R2 > 0.8) by one statistic and not the other. Be‐
cause of this and because studies in the chemometrics litera‐
ture (e.g., Blanco et al., 2000; Estienne et al., 2001) consider
it appropriate to evaluate different DRS calibration method‐
ologies based only on RPD or RMSEP, RPD was chosen as
the evaluation statistic for comparison among calibration
methods in the remainder of this study.

Figure 2 compares RPD values for soil property estimates
by methods 1 and 2. All RPD values are located below the 1:1
line, indicating that method 1, where specific field informa‐
tion was included, was consistently better than method 2, re‐
gardless of field location or soil property. The distance of
each point from the 1:1 line indicates how much RPD de-
creased from method 1 to method 2. For example, data points
from the two SD datasets were close to the line, meaning
there was little decrease in accuracy when using method 2.

Figure 2. Comparison of RPD for methods 1 and 2 across all datasets (left) and soil properties (right).
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Table 4. Ratio of RPD from method 2 to RPD from method 1.
Test Dataset Clay Silt Sand Ca Mg CEC SOC pH Total N Mean

MO 0.58 0.45 0.38 0.46 0.32 0.50 0.23 0.64 0.45 0.45
IL 0.52 0.74 0.65 0.56 0.87 0.70 0.57 0.73 0.62 0.66
MI 0.43 0.45 0.41 0.75 0.53 0.50 0.37 0.86 0.37 0.52

SD1 0.86 0.78 0.77 0.88 0.92 0.91 0.94 0.85 0.92 0.87
SD2 0.99 0.57 0.54 0.83 0.65 0.84 0.85 0.75 0.83 0.76
IA 0.83 0.34 0.42 0.74 0.40 0.80 0.61 0.56 0.89 0.62

Mean 0.70 0.56 0.53 0.70 0.61 0.71 0.59 0.73 0.68 0.65

To further investigate the increase in RPD, ratios of method
2 RPD to method 1 RPD were calculated (table 4). RPD in‐
creases were different for different soil properties, with method
2 providing RPD values from 23% to 99% of the method 1
RPD. As noted above, method 2 performed better for the SD da‐
tasets, with mean RPD values 76% and 87% of the method 1
RPD. For the MO, IL, MI, and IA datasets, method 2 provided
mean RPD values from 45% to 66% of the method 1 RPD.

RPD differences for SOC were generally large for the MO,
IL, MI, and IA datasets, with ratios ranging from 23% to 61%,
and small for the SD fields, with ratios of 85% and 94%
(table�4).  The largest RPD differences (smallest ratios) for
clay, CEC, and total N were found for the MO, IL, and MI da‐
tasets. The largest RPD differences for silt and sand were in
MO, MI, and IA, and for Ca in MO and IL. For other soil prop‐
erties and states, RPD was more similar between the two
methods; however, the prediction accuracy of method 1 was
always better than that of method 2.

For the two SD fields, where method 1 was more accurate
on average than at the other fields (tables 2 and 3), the method
2 RPD was closer to method 1 compared to the datasets from
other states. This could have been due to several factors:
(1)�variability  of most soil properties within the SD fields was
within the range encompassed by the other fields (Lee et al.,
2009), (2) because the two SD datasets were kept separate for
analysis, they contained fewer calibration points than the oth‐
er datasets, or (3) contrary to our initial assumption that soils
were different between the two SD fields, soils were similar
enough that having one of the fields in the calibration dataset
meant that the second did not provide much improvement.

Based on these results, and consistent with Westerhaus et
al. (2004), we conclude that NIR soil property estimates are
degraded considerably when calibration samples are not rep‐
resentative of the variability present in the locations
(e.g.,�fields,  watersheds, regions) where the sensor is to be
operated. The approach used in our analysis, where all but the

SD datasets included data from multiple fields, suggested
that samples may not need to be from the exact fields under
study but should at least come from fields with similar soils
and management histories. Previous researchers (Sudduth
and Hummel, 1996; Christy, 2008; Brown et al., 2005) re‐
ported similar findings.

METHOD 3 
With method 3, RPD increased as the number of test field

sample points added to the calibration model increased, but
the degree of increase was different for different sites and soil
properties. Figure 3 shows RPD vs. the number of sample
points (soil cores) that were added to method 2 for CEC (left)
and SOC (right). Each sample point included all data from the
complete soil core obtained at that point, an average of three
samples per core. Soil organic carbon was chosen for illustra‐
tion because it had the highest RPD in method 1 (table 2) and
for several datasets exhibited a large difference in RPD be‐
tween method 1 and method 2 (table 4). CEC was chosen be‐
cause its RPD values were near the mean for all soil
properties in both cases.

RPD values increased rapidly with added points but only
up to a certain number (e.g., about 6 for CEC and 9 for SOC
in MO fields). The rates of RPD increase then became lower,
to near zero in some cases. For example, as the number of
sample points increased from 0 (same as method 2) to 16,
SOC RPD increased rapidly, from about 1.0 to 2.3 in the MI
dataset and from 2.0 to 3.1 in the IL dataset. In the MO and
IA datasets, SOC RPD increased from 0.4 to 1.4 and from 1.6
to 2.2, respectively (fig. 3). For CEC, RPD values increased
by about 0.7 with 12 additional sample points for the MO da‐
taset, and by about 0.5 with 10 added points for the IL dataset
and 19 added points for the MI dataset. Generally, RPD in‐
creases for the two SD datasets were lower; however, the ini‐
tial (method 2) RPD was higher for the SD datasets than for
others (fig. 3).
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Table 5. Number of sample points from the test dataset required to achieve a method 3 RPD 90% of that from method 1.
Test Dataset Clay Silt Sand Ca Mg CEC SOC pH Total N

MO 16 24 24 18 22 14 20 14 12
IL 16 8 14 20 2 4 24 14 16
MI 20 10 16 22 20 20 20 14 20

SD1 8 4 6 1 1 1 1 2 1
SD2 1 12 12 6 8 8 4 6 8
IA 12 20 14 18 22 6 18 10 8

Table 5 shows the number of soil sample points needed
with method 3 to obtain 90% of the RPD of method 1. The
number of samples required to reach this threshold using
method 3 was different depending on sites and soil properties
and ranged from 1 to 24. For SOC, 15 additional sample
points were sufficient to reach this threshold for the IA data‐
set, 20 were required for the MO and IL datasets, and 24 were
necessary for the MI dataset. In the case of the SD1 and SD2
datasets, where relatively high RPD values were obtained us‐
ing method 2 and the RPD differences were relatively small
between methods 1 and 2, adding only a few sample points
(1 for SD1 and 4 for SD2) was sufficient to reach the 90%
threshold.

In the case of CEC, adding a small number of sample
points often allowed the 90% threshold to be met (1 for SD1,
4 for IL, 6 for IA, and 8 for SD2); however, 14 were required
for MO and 20 for MI, the two datasets with the lowest meth‐
od 2 RPD. Similar patterns were observed for the other soil
properties. Those with relatively high method 2 RPD values
(e.g., soil properties from SD fields) required only a small
number of additional sample points to be added in method 3
to reach the 90% threshold, although the RPD increases were
generally small. However, soil properties where method 2
RPD values were relatively low showed gradual RPD in‐
creases, with the threshold being reached with somewhere
between 8 to 20 added sample points. From these results, we
conclude that the addition of several within‐field calibration
points to the PLS calibration can often improve the accuracy
of NIR soil property estimates, and that a large portion of the
potential improvement (i.e., reaching 90 % of the method 1
RPD) can be obtained through the addition of 8 to 20 field‐
specific points, depending on the soil properties to be esti‐
mated. Using an approach similar to method 3, Bricklemyer

and Brown (2010) found a 20% increase in RPD for clay con‐
tent when adding nine local samples to a general calibration,
but no increase in SOC accuracy. Their lower improvement
in RPD may have been because they used a maximum of nine
local samples, fewer than the number indicated for most test
datasets in this study (table 5).

METHOD 4
Figure 4 shows the maximum RPD values obtained using

method 4 with bias correction (i.e., adjusted method 2) vs.
method 2 without field‐specific information, for all fields and
soil properties. RPD values were all located above the 1:1
line, indicating that the bias correction of method 4 consis‐
tently improved estimates of soil properties compared with
method 2. Datasets with higher method 2 RPD values had
little improvement with method 4, as shown by those values
being near the 1:1 line. However, method 4 provided a sub‐
stantial improvement for many datasets with a moderate
method 2 RPD (fig. 4).

In method 4, the rate of RPD increase with the number of
sample points used for bias correction was different for dif‐
ferent field datasets and soil properties. For many data‐
sets�and soil properties, RPD increased by about 0.2 to 1.0
when 2 to 6 sample points were used, but then did not increase
further. Greater RPD increases of about 0.4 to 1.0 were ob‐
served for CEC in the MO and IL datasets and for SOC in the
MO, MI, and IA datasets. In the SD1 and SD2 datasets, where
method 2 RPD was already relatively high, bias correction
did not improve SOC estimates.

Table 6 shows the number of soil sample points required
in method 4 to obtain 90% of the method 1 RPD. Small num‐
bers of additional sample points (i.e., 1 to 9) were needed to
achieve the 90% threshold for many soil properties in the SD

Figure 4. Comparison of RPD statistics for methods 4 and 2 across all datasets (left) and soil properties (right).
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Table 6. Number of sample points from the test dataset required in method 4 to achieve an RPD 90% of that from method 1.
Test Dataset Clay Silt Sand Ca Mg CEC SOC pH Total N

MO ‐‐[a] ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐
IL ‐‐ 2 2 ‐‐ 1 4 ‐‐ 1 ‐‐
MI ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ 1 ‐‐

SD1 ‐‐ 1 1 ‐‐ 5 4 1 ‐‐ 1
SD2 1 9 ‐ 1 2 1 1 2 ‐‐
IA ‐‐ 1 3 ‐‐ ‐‐ 6 ‐‐ ‐‐ 11

[a] Indicates that method 4 was not able to achieve an RPD 90% of that from method 1.

Table 7. Ratio of maximum RPD from method 4 to RPD from method 1.

Test Dataset Clay Silt Sand Ca Mg CEC SOC pH Total N Mean

MO 0.63 0.57 0.49 0.70 0.58 0.71 0.62 0.72 0.86 0.65
IL 0.89 1.04 1.15 0.89 0.95 0.92 0.61 1.06 0.71 0.91
MI 0.75 0.84 0.68 0.75 0.54 0.51 0.71 0.95 0.75 0.72

SD1 0.88 1.05 1.10 0.88 0.94 0.99 0.95 0.85 0.94 0.95
SD2 0.96 0.94 0.90 0.96 1.00 0.96 0.91 0.91 0.88 0.94
IA 0.74 1.04 1.10 0.74 0.79 0.97 0.87 0.57 0.94 0.86

Mean 0.81 0.91 0.90 0.82 0.80 0.84 0.78 0.84 0.85 0.84

datasets, while the threshold was not reached with all sample
points for any soil property in the MO dataset and was
reached for only one MI soil property. In the IL and IA data‐
sets, some soil properties required only a few (i.e., 1 to 6)
additional samples for method 4 to reach the 90% threshold,
while the threshold was not met with other properties.

Comparison of method 4 (table 6) with method 3 (table 5)
showed that in the cases where method 4 was able to achieve
the 90% threshold, it generally did so with fewer sample
points. We attributed this to the characteristics of method 4,
including a relatively rapid increase in RPD with data from
a few soil sample points and very little improvement after
that, regardless of how many additional points were used for
bias correction. In contrast, method 3, which included addi‐
tional samples directly in the calibration equation, exhibited
a more gradual increase in RPD as more sample points were
added (fig. 3).

When including six or fewer additional points from the
test dataset, RPD values of method 4 reached 60% to 90% of
method 1 RPD values, showing that method 4 was effective
in increasing RPD. Overall, it appeared that using two to six
sample points for bias correction in method 4 increased RPD
above method 2 by 0.2 to 1.0 for most soil properties. Only
a few additional sample points were necessary to reach 60%
to 90% of the method 1 RPD for many of the datasets. On av‐
erage, method 4 was least accurate for the MO and MI data‐
sets; for all others, maximum method 4 RPD was 86% of the
method 1 RPD or greater (table 7). These same datasets were
also lowest in mean method 1 RPD (table 2). While means for
many soil properties (e.g., clay, CEC, SOC; table 1) were
similar between the IL, IA, and SD datasets, mean values for
the MO and MI datasets were often quite different. Evidently
these two datasets were different enough in their soil proper‐
ty/DRS relationship that a simple bias adjustment was not
sufficient for calibration improvement. In contrast, method�4
was quite effective for the other datasets, even providing
RPD values greater than those from method 1 in a few cases
(table 7).

For both method 3 (fig. 3) and method 4, the RPD results
represent only one possible actualization of calibration set
selection. To better understand the number of samples re‐
quired for bias correction using method 4, a Monte Carlo sim‐

ulation was employed. Ideally, this approach would have
been applied to method 3 as well, but it was impractical to
perform the several thousand additional PLS analyses that
would have been required.

The Monte Carlo simulation was performed in the follow‐
ing manner. For each sample size from 1 to 34 (maximum
number of cores at any site), a random calibration set was se‐
lected 100 times, and the resulting mean and standard devi‐
ation of the bias correction for each calibration set size were
computed. The 95% confidence intervals were determined
for each calibration set size, and the RPD for an observation
at the edge of that confidence interval was computed by using
a bias value that was 1.96 standard deviations from the mean
estimate.  Figure 5 displays the RPD values from the simula‐
tion. The true RPD values should be as good as or better than
these 95 times out of 100.

RPD increased continuously (fig. 5) as the number of soil
cores used for bias correction increased, up to about five or
six cores, and then the rate of the RPD increase began to pla‐
teau. Thus, the maximum improvement due to bias correc‐
tion (method 4) was obtained with around six soil cores, both
for the single actualization of the calibration and with the
Monte Carlo simulation. Method 4 results using the Monte
Carlo simulation for other soil properties showed trends simi‐
lar to those of CEC and SOC. Monte Carlo simulation also
confirmed that only small numbers of additional sample
points (i.e., two to six samples) were required to reach 60%
to 90% of method 1 RPD values for many of the sites and soil
properties.

COMPARING METHODS
Figure 6 compares RPD values averaged over all fields

and soil properties for the four different calibration methods.
For methods 3 and 4, results are given for one random selec‐
tion of varying numbers of calibration cores (6, 10, 14, and
all) from the test dataset. These numbers of additional cal‐
ibration points (soil cores) were chosen for display because
examination of the method 3 and method 4 results indicated
that most of the improvement in RPD was achieved after the
addition of between 6 and 14 cores.

As expected, the mean RPD was highest for method 1 and
lowest for method 2. In methods 3 and 4, as the number of in-
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Figure 5. RPD of method 4 model with bias correction based on Monte Carlo simulation vs. number sample points included from the test dataset for
CEC (left) and SOC (right).

cluded soil cores increased from 6 to 10, to 14, and to all
available cores, mean RPD moved closer to that obtained by
method 1. For method 3, as the number of additional soil
cores increased, the RPD consistently increased. The rate of
increase for the method 3 RPD varied depending on the soil
property and site, although for many site/soil property com‐
binations, and on average (fig. 6), there was significant in‐
crease in RPD to 14 cores and beyond. In method 4, inclusion
of 6 calibration cores provided most of the increase possible,
and additional soil cores did not generally increase the RPD
value.

In general, method 3 required the addition of 8 to 20 sam‐
ple points to the calibration model obtained by method 2 be‐
fore 90% of the method 1 RPD value was achieved. This
improved the RPD by 0.2 to 1.1. Method 4 required the addi‐
tion of 2 to 6 sample points to achieve 60% to 90% of the
method 1 RPD, while improving the RPD by 0.2 to 1.0. Re‐
sults with both methods 3 and 4 depended to some degree on
the order in which randomly selected points entered the cal‐
ibration. Although we sometimes saw somewhat unstable

0 0.5 1 1 .5 2 2.5 3
Mean RPD

6 points

10 po ints

14 points

all po ints

6 points

10 points

14 points

all points

Method 4

Method 3
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Figure 6. Mean RPD values obtained with each calibration method. Meth‐
ods 3 and 4 included 6, 10, 14, and all soil cores from the test dataset in the
calibration.

fluctuations in RPD when increasing the number of points in
method 3 (fig. 3) and method 4, these fluctuations disap‐
peared after more points (generally 6 or fewer) were added
and each individual point had less influence on the overall re‐
sult. More stable results might be expected by implementing
calibration point selection based on spectral diversity, as de‐
scribed by Christy (2008).

Averaged across all data, the maximum (i.e., using all
samples available in the test field) improvement in RPD by
method 4 was 0.29, while the average maximum improve‐
ment by method 3 was 0.49 (fig. 6). Although method 3 could
achieve higher overall accuracies, we consider method 4
more efficient because it required fewer calibration points
within the test field and did not require a complete PLS recal‐
ibration for each new situation. Depending on the specific
circumstances (e.g., ease and cost of field data collection and
analysis vs. accuracy requirements), either method of cal‐
ibration improvement might be preferred.

Questions remain about the degree of similarity required
between calibration and prediction samples and how the re‐
quired similarity can be achieved. A basic tenet of NIR pre‐
diction is that calibration samples must adequately represent
the variability in the prediction set (Westerhaus et al., 2004).
Although this concept is implemented relatively easily in
NIR product analysis, soil heterogeneity, often at multiple
spatial scales, makes it more difficult to select the required
representative  samples. Although variability in some soil
properties of interest, such as nutrient levels and to a lesser
extent SOC, may be related to farming activities and there‐
fore be specific to fields, other properties such as texture and
CEC are more related to mineralogy and soil‐forming activi‐
ties that act over landscapes rather than fields. Brown et al.
(2005) reported needing local calibration samples, but their
“locations” encompassed multiple fields. Results of this
study, where our test datasets (except in the case of SD) con‐
sisted of multiple fields located on the same landscape, indi‐
cate that accurate predictions require including some
calibration samples from that local area. However, similar to
Brown et al. (2005), our results are not definitive on whether
field‐specific  calibration is needed.

SUMMARY AND CONCLUSIONS
The broad objective of this research is to develop a

reflectance‐based  soil property sensor for precision agricul‐
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ture. In this part of the study, different calibration methods
were devised and compared to investigate sampling and cal‐
ibration requirements for such a sensor. The data came from
ten fields across the U.S. Corn Belt (MO, IL, MI, IA, and SD),
from which 1.2 m deep soil cores were obtained, segmented
by horizon, and analyzed in the laboratory for multiple soil
properties. These data were compared with soil reflectance
spectra from 1770 to 2500 nm obtained using a commercial
spectrometer. Major findings were:

� Calibrations that did not include samples from the test
dataset (method 2) resulted in lower RPD values than
calibrations that included test dataset samples (meth‐
od�1). Reductions in RPD ranged from 0.01 to 1.78, de‐
pending on dataset and soil property. Mean RPD
reduction was greatest (1.05) for SOC. Thus, we con‐
clude it is important to include samples similar in soils
and crop management to each test field in the calibra‐
tion data set. Whether calibration samples are required
from each specific test field is a question for further in‐
vestigation.

� When the number of field‐specific sample points in‐
cluded in the PLS calibration increased (method 3, hy‐
brid calibration), RPD first increased rapidly but then
reached a plateau. In general, initial rates of RPD in‐
crease were greater for soil properties that exhibited
larger overall RPD increases between methods 1 and 2.
We conclude that the addition of several within‐field
calibration points to an initial (method 2) calibration
could improve the accuracy of a NIR soil property sen‐
sor, and that a large portion of the potential improve‐
ment (e.g., 90% of method 1 RPD) could be obtained
by adding about 8 to 20 points, depending on the soil
property to be estimated.

� Based on the observation that a major difference be‐
tween methods 1 and 2 was a bias offset, data from test
field points were used to apply a bias correction to
method 2 results (method 4, two‐stage calibration). In
general, bias correction increased RPD by 0.2 to 1.0
when two to six sample points were included. This indi‐
cated that a smaller number of additional samples
would be required for sensor calibration using meth‐
od�4 compared to method 3, but with somewhat re‐
duced accuracy. Adding a small number of additional
sample points allowed us to obtain 90% of the meth‐
od�1 RPD values for many soil properties in some
states; however, there were some soil properties that
never reached 90% of method 1 RPD even when all the
additional sample points were used. Method 4 findings,
which were based on a single random order entry of
samples in the analysis, were confirmed with Monte
Carlo simulations.

These results provide guidance on sampling and calibra‐
tion requirements for NIR soil property estimation. Addition‐
al data collection, further investigation using additional
model selection criteria, and automation of these procedures
are subjects for future study.
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