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Lack of basic knowledge about spatial and treatment varying crop response to irri-
gation hinders irrigation management and economic analysis for site-specific agricul-
ture. One model that has been postulated for relating crop-specific economic quantities
to irrigation is a quadratic response curve of yield as a function of irrigation. Although
this model has far reaching economic interpretations it does not account for spatial
variation or possible nitrogen–irrigation interactions. To this end we propose a spa-
tially treatment varying coefficient model that alleviates these limitations while pro-
viding measures of uncertainty for the estimated coefficient surfaces as well as other
derived quantities of interest. The modeling framework we propose is of independent
interest and can be used in many different applications. Finally, an example involving
site-specific agricultural data from the U.S. Department of Agriculture–Agricultural
Research Service demonstrates the applicability of this methodology.

Key Words: Additive models; Bivariate smoothing; Penalized splines; Semiparamet-
ric regression; Varying coefficient models.

1. INTRODUCTION

Sadler, Camp, Evans, and Millen (2002) conducted an experiment with the goal of
measuring the mean response of corn to irrigation amounts on 12 soil map units. Addi-
tionally, this research compares the variation in the response within and among soil map
units. During the course of this research it was determined that corn yield can be described
as a quadratic function of irrigation. Such a production function (a.k.a. response curve) is
common in irrigation research and provides the practitioner with the essential information
needed to make appropriate water applications and achieve optimal crop response. In order
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to fully take advantage of the quadratic relationship between crop yield and irrigation, a
model that makes use of the inherent spatial dependence is required.
Varying coefficient models are concerned with a class of regression or generalized

regression models whose coefficients are allowed to vary as smooth functions of other
variables and were first developed by Hastie and Tibsharani (1993). Since the models’
first inception, there have been many research efforts leading to numerous methodological
advances. Although varying coefficient models have become an active area of research,
by comparison, there have been relatively few efforts aimed at models having spatially
varying coefficients.
One article that addresses the topic of spatially varying coefficient models is Assunçao,

Gamerman, and Assunçao (1999). In this research the authors introduced a Bayesian model
with space-varying parameters in order to study microregion factor productivity in Brazil-
ian agriculture. Another contribution to this area can be attributed to Gamerman, Moreira,
and Rue (2002) who developed a modeling approach for space-varying regression. How-
ever, the model they proposed makes the assumption that a given coefficient is constant
over specified areal units, rendering the model somewhat restrictive. In order to circumvent
this inflexibility one could introduce parametric models for each coefficient. This type of
methodology was fully described by Fotheringham, Brunsdon, and Charlton (2002) where
the authors provided a comprehensive treatment of the subject of geographically weighted
regression.
Luo andWahba (1998) used a spline surface model over a two-dimensional space in the

context of meteorological data. The modeling technique they developed provides greater
flexibility but requires the user to choose the spline basis function along with the num-
ber and locations of the knot points. In the context of locally stationary spatial modeling
Agarawal, Gelfand, Sirmans, and Thibadeau (2003) introduced local regression models for
assessing factors that control housing prices in school (and subschool) district levels.
In the general research area of spatially varying coefficient models, several Bayesian

approaches have also been proposed. One early research effort that used spatially varying
coefficients is Wikle, Berliner, and Cressie (1998). This research proposes a hierarchical
model for monthly surface temperatures in the Midwest. Here parameters controlling the
mean, annual cycle, and vector autoregressive (VAR) dynamics are allowed to be spa-
tially varying. Additionally, Assunçao, Potter, and Cavenaghi (2002) provided a Bayesian
method for generalized linear models with coefficients allowing for spatial dependence.
Further, Gelfand, Kim, Sirmans, and Banerjee (2003) built regression models to explain a
response variable over a region of interest under the assumption of spatial dependence.
More recently, Wikle and Anderson (2003) considered a spatio-temporal, zero-inflated
Poisson (ZIP) model. The model they proposed allows coefficients for climate to vary with
space. In addition, since the dimensionality was quite high, the coefficients were modeled
as an expansion in terms of a lower-dimensional set of spatial basis functions. Penalized
splines and generalized additive models, for analyzing spatial temporal data, were proposed
by Fahrmeir, Kneib, and Lang (2004), although this work also adopts a Bayesian approach.
Finally, a recent implementation of Bayesian spatially varying growth curve models with
application to weed growth was proposed by Banerjee and Johnson (2006).
Although our application of interest can be formulated using a Bayesian approach, that
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is not the main focus of our analysis. However, we feel the effectiveness and suitability
of such methods warrant their inclusion. Moreover, since the link between mixed mod-
els and Bayesian methods are straightforward and may be of interest to a portion of the
intended audience we provide a brief description of this methodology. Of course, in ad-
dition to producing flexible, geographically weighted response curves, one of the explicit
goals of the analysis we conduct is simplicity of exposition. Specifically, we wish to pro-
vide methods that are easily accessible to practitioners (agronomists) having a background
only in regression. Therefore, a Bayesian approach is only briefly described. For a more
thorough treatment of Bayesian semiparametric regression see, for example, Crainiceanu,
Ruppert, and Wand (2005); Zhao, Staudenmayer, Coull, and Wand (2006); Giminez, Bar-
braud, Crainiceanu, Jenouvrier, and Morgan (2006); and the references therein.
The research at hand is motivated by the need to model spatially dependent response

curves, specifically for application to site-specific agriculture. Additionally, when con-
structing response curves, it is often the case that the response curve varies according to
the level of an additional treatment, forcing the practitioner to construct several different
curves during the course of the analysis. Therefore, in addition to allowing the response
curve to vary spatially, it is also of general interest to implicitly allow the response curve
to vary according to the level of an additional factor (treatment).
In this article we propose semiparametric weighted response curves that vary over both

space and treatment level. That is, the coefficients in our response curve allow for spatial
dependence as well as a possible treatment A by treatment B interaction. Specifically, we
model the coefficient surfaces using penalized spline regression, a nonparametric smooth-
ing method that has gained recent popularity since the seminal work of Eilers and Marx
(1996). Furthermore, the semiparametric model we propose exploits the equivalence be-
tween penalized splines and mixed models. This framework benefits from its ease of imple-
mentation while providing tremendous flexibility; see Ruppert, Wand, and Carroll (2003,
chap. 1) for a comprehensive discussion. Finally, we construct approximate (point-wise)
confidence intervals for the coefficient surfaces conditional on a given treatment level as
well as for several researcher-defined (derived) quantities of interest.
This article is organized as follows. Section 2 describes the motivating application,

analysis of site-specific agricultural data from the U.S. Department of Agriculture–
Agricultural Research Service. Section 3 provides details surrounding the proposed method-
ology while Section 4 describes semiparametric geographically weighted response curves
both in general and as it applies to our motivating example. A Bayesian implementation is
presented in Section 5. Finally, concluding remarks are provided in Section 6.

2. SITE-SPECIFIC AGRICULTURE EXPERIMENT

The experiment we consider was conducted during the 1999–2001 corn growing sea-
sons at the site-specific center-pivot irrigation facility in Florence, South Carolina. Al-
though the data were analyzed over all three years, each year was analyzed separately. To
this end, as an illustration of the proposed methodology, we present a contemporaneous
analysis from 1999.
The site of the experiment was mapped on a 1:1200 scale by USDA-SCS staff in 1984



SEMIPARAMETRIC GEOGRAPHICALLY WEIGHTED RESPONSE CURVES 427

Figure 1. Diagram of experimental design for corn yield experiment, with soil map unit boundaries.

(USDA-SCS 1986); a brief description of the 12 soil map units under the center pivot can
be found in Table 1 of Sadler et al. (2002). The design imposed in the experiment con-
sisted of treatments of nitrogen and irrigation. Where sufficient area existed in the soil
map unit boundaries a 4 × 2 factorial randomized complete block design (RCB) was in-
troduced, while in regions where insufficient area was available randomized incomplete
blocks (RICB) were used. This produced 39 RCB’s and 19 RICB’s for a total of 396
plots. The four irrigation treatments were 0%, 50%, 100%, and 150% of an irrigation base
rate (IBR) determined using meteorological conditions combined with soil water potential
values (SWP). The two N-fertilizer treatments were 135 kg/ha and 225 kg/ha, the rec-
ommended rainfed and irrigated rates. Moreover, these treatments corresponded to target
yields of 6.3 and 10.1 Mg/ha. A diagram of the experimental design can be found in Figure
1 and a detailed description of the experiment is provided in Sadler et al. (2002).
As part of an analysis of variance Sadler et al. (2002) determined that corn yield can

be described as a quadratic response curve in irrigation, that is,

Yield = A0 + A1Irr+ A2Irr2 + ε, (2.1)

where Irr is irrigation applied in mm. The problem with this function is that it does not take
into account spatial variation or variation due to the imposed nitrogen treatment. However,
as previously noted, this response curve provides important economic and managerial in-
formation to the practitioner and thus improving its overall utility is of general interest. For
example, two important quantities that result from this function are rainfed yield (yield at
0 irrigation) and maximum yield; see Figure 2 for a schematic of useful quantities that can
be derived from this curve.
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Figure 2. Example schematic diagram of managerial and economic quantities that can be derived from the
quadratic response curve.

One approach that was proposed by Sadler (2004) to accommodate the inherent spatial
variation was to use a “two-step sequential” method. The first part of the method iso-
lated layers by treatment and then interpolated values to the plot centers for each of the
396 points for each level of the treatment. This procedure splits the experiment into eight
unique treatments, four for the low level of nitrogen and four for the high level. Note that,
by construction, this procedure ignores the relationship between N levels. Finally, the four
values are extracted at each location and a regression run to produce estimates of the co-
efficients in (2.1). This produces 396 equations for each level of N (i.e., 792 equations
total).
There are several distinct disadvantages that arise from the “two-step” procedure. First,

there are 792 separate equations that the practitioner needs to evaluate in order to produce
any desired quantity of interest. Second, the method does not use spatial correlation or
“closely related” treatments in formulating parameter estimates. Further, the method re-
quires that the practitioner form a kriging estimate in the first stage of the procedure (i.e.
perform spatial interpolation). This presupposes explicit knowledge of spatial statistics and
requires choosing several “tuning” parameters. Of course, the method we propose is not
entirely free of these choices either. However, the practitioner is relieved from making
these choices through the implementation of default knot choices (location and number) as
well as through maximum likelihood (or REML) estimation of the smoothing parameter.
Finally, and perhaps most importantly, there are no measures of uncertainty for any of the
estimated quantities associated with the model or derived as a result.
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The method proposed here addresses and solves each of the potential disadvantages
associated with the “two-step” procedure. First, the model coefficients are spatially and
nitrogen (treatment) varying resulting in model estimates obtained using all of the obser-
vations and hence “borrows strength” across the spatial and treatment domains. That is, all
of the observations are used to estimate our model alleviating the need for 792 separate
equations. Moreover, we provide pointwise confidence surfaces for model coefficients as
well as describe methods for obtaining measures of uncertainty for all researcher-derived
quantities of interest.

3. BIVARIATE PENALIZED SPLINE REGRESSION

In order to fully account for the spatial dependency present in our experiment requires
a model capable of accounting for a continuous interaction between both directions in the
spatial domain. To this end, the model ultimately proposed involves a bivariate predictor;
therefore, we provide a brief overview of general spline based nonparametric regression
for bivariate predictors. The description we provide closely follows that of Ruppert et al.
(2003, chap. 13) and makes use of the equivalence between P-splines and mixed models.
The first model we consider is the general bivariate smoothing model

yi = f (xi ) + εi , (3.1)

where xi = (si , ti ) can be thought of as latitude and longitude (or positions in x-direction
and y-direction on a Cartesian coordinate system), respectively, and εi are assumed to be
iid N (0, σ 2ε ). Specifically, for xi , κκκk ∈ R2 let

X = [1 xi ]1≤i≤n ; ZK = [C(xi − κκκk)
1≤k≤K

]1≤i≤n,

where

C(r) = ||r||2ν−2log||r||, (3.2)

and κκκk (k = 1, . . . , K ) denote fixed knot points inR2. In this context ν is an integer greater
than one that controls smoothness. Additionally, note that C(r) can also be chosen as radial
basis functions corresponding to a proper covariance structure (see Ruppert et al. 2003, p.
254). Further, let

%%%K = [C(κκκk − κκκk′)
1≤k,k′≤K

],

then the penalized spline regression is obtained by minimizing

1
σ 2ε

||Y− Xβββ − ZKb||2 + 1
λσ 2ε

b′%%%Kb,

where βββ = (β0,β1)′, b = (b1, . . . , bK )′ and λ corresponds to a fixed penalty parame-
ter (“smoothing” parameter). In addition, take βββ to be fixed, b random with E(b) = 0,
cov(b) = σ 2u%%%

−1
K , where σ 2u = λσ 2ε . So long as (b′, εεε′)′ is normally distributed, where
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εεε = (ε1, . . . , εn)′ and b and εεε are independent one can obtain an equivalent linear mixed
model representation of the penalized spline (Brumback, Ruppert, and Wand 1999); see
Crainiceanu, Ruppert, and Wand (2005) and references therein for complete details. That
is, the P-spline is equal to the best linear unbiased predictor (BLUP) in the linear mixed
model (LMM)

Y = Xβββ + ZKb+ εεε, (3.3)

with

cov

(
b
εεε

)

=
(

σ 2u%%%
−1
K 0
0 σ 2ε In

)

.

Again, following Crainiceanu et al. (2005), define Z = ZK%%%
−1/2
K and u = %%%

1/2
K b. Then

the mixed model (3.3) can be equivalently expressed as

Y = Xβββ + Zu+ εεε, (3.4)

with

cov

(
u
εεε

)

=
(

σ 2u IK 0
0 σ 2ε In

)

and fit using best linear unbiased predictor (BLUP) estimation. Finally, if K (the number
of knot points) is large, the function f (·) in (3.1) can usually be approximated sufficiently
well.
Perhaps the most difficult aspect with regard to bivariate semiparametric regression is

the choice of knots. In the univariate case one reasonable option for selecting knot points
is to evenly distribute them in the quantile domain (French, Kammann, and Wand 2001)
according to rules such as

K = min
{
1
4
(number of unique predictor values), 35

}
, (3.5)

or those given in Ruppert (2002); see Ruppert et al. (2003) for a complete discussion.
Unfortunately this approach breaks down in higher dimensions due to the lack of a clear
cut definition of the quantile (for d > 1). One method used to remedy this situation is to
place knot points using space filling designs (Johnson, Moore, and Ylvisaker 1990; Nychka
and Saltzman 1998). However, the use of space filling designs can be slow for large n and
K ; therefore, as suggested by Ruppert et al. (2003, chap. 13, pp. 255–260), we apply a
space filling design algorithm to a set of randomly selected points xi . This can be achieved
using the FUNFITS module (Nychka, Haaland, O’Connell, and Ellner 1998) or via the
SemiPar 1.0 package in R (Wand et al. 2005).
In order to simplify matters, in terms of choosing user-defined “tuning” parameters, we

implement a slight adaptation of the default bivariate smoothing algorithm of Ruppert et al.
(2003, p. 257). The algorithm we implement is a slight adaptation only to the extent that the
procedure suggested by Ruppert et al. (2003) is in terms of a simple bivariate smoothing
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(i.e., only one bivariate predictor—namely, location); however, in our case the algorithm is
applied to a spatially treatment varying coefficient model having several predictors (both
univariate and bivariate). Specifically, for our application, the algorithm we implement
chooses the number of knots according to K = max(20,min(n/4, 150)), and obtains the
appropriate knot points by applying a space filling algorithm. Note that this step can also
be executed using the default knot selection algorithm in the SemiPar 1.0 R package (Wand
et al. 2005). Further, we choose ν = 2 in (3.2) and reexpress the model in the form of (3.4).
Then using standard software we fit the model with σ 2ε , σ 2u chosen by maximum likelihood
and βββ, u the corresponding EBLUPs (Ngo and Wand 2004).

4. SPATIALLY TREATMENT VARYING RESPONSE CURVES

One of the goals of all experiments is to describe the response to treatment factors, as in
Kuehl (2000). That is, when treatment factors have qualitative levels it is often beneficial
to characterize the response y to the factor levels x using polynomial regression, some-
times referred to as response curves. Furthermore, response curves have the advantage of
providing a graphical representation in which one can visualize the response across the
different factor levels of the treatment included in the experiment; see Kuehl (2000) and
the references therein for further details.
Many times when conducting agricultural experiments the response varies not only

across the factor levels of the treatment but across the spatial domain as well. Therefore
making the response curve spatially explicit will potentially provide better explanatory
power by borrowing strength among spatially correlated responses. In particular, suppose
that our response can be described as a quadratic function of the treatment (trt). Then

Yi = β0(xi ) + β1(xi )trti + β2(xi )trt2i + εi (4.1)

provides a spatially varying response curve. Furthermore, if there are known treatment A
by treatment B interactions they can be implicitly incorporated into (4.1) yielding

Yi = β0(xi , trtAi ) + β1(xi , trtAi )trtBi + β2(xi , trtAi )trtB2i + εi . (4.2)

This method of modeling response curves is quite flexible as there are numerous ways one
can express the smooth surfaces (or curves) β0(·, ·), β1(·, ·), and β2(·, ·). Although these
coefficient surfaces can be modeled semiparametrically via kernels (i.e., local polynomi-
als), Fourier bases, wavelets, etc., in keeping with our previous exposition and with the
goal of producing “default” spatially treatment varying response curves we use the mixed
model formulation of the P-spline.
Before considering models with bivariate radial basis functions, we examined several

models of the form

Yi = A0(si , ti , Ni ) + A1(si , ti , Ni )Irri + A2(si , ti , Ni )Irr2i + εi . (4.3)

Specifically, we considered additive models for A•(si , ti , Ni ) with a binary offset (in Ni-
trogen) (cf. Ruppert et al. 2003, pp. 162–163). Under this specification, the general form
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of (4.3) can then be expressed as

Yi = {a0Ni + g0(si ) + h0(ti )} + {a1Ni + g1(si ) + h1(ti )}Irri
+{a2Ni + g2(si ) + h2(ti )}Irr2i + εi , (4.4)

and, with an appropriately chosen set of univariate basis functions (i.e., low-rank, thin-plate
splines), can subsequently written in the form of (3.4).
Ultimately, due to the spatial attributes of our experiment (and model selection criteria),

the model used in our analysis had the general form

Yi = A0(xi , Ni ) + A1(xi , Ni )Irri + A2(xi , Ni )Irr2i + εi , (4.5)

where xi = (si , ti ), Irri , and Ni refer to the spatial location, the irrigation treatment and
the nitrogen treatment, respectively, for the i th observation. The specific form of (4.5)
we constructed consists of a bivariate smoother for A•(xi , Ni ) with a binary offset (in
Nitrogen). To this end, (4.5) can be expressed as

Yi = {a0Ni + f0(xi )} + {a1Ni + f1(xi )}Irri + {a2Ni + f2(xi )}Irr2i + εi , (4.6)

where the specific form of f•(xi ) is discussed in Section 3. Additionally, define

X =
[
Ni xi Ni Irri xi Irri Ni Irr2i xi Irr

2
i

]

1≤i≤n
,

ZK = [||xi − κκκk ||2log||xi − κκκk ||
1≤k≤K

]1≤i≤n,

and

%%%K = [||κκκk − κκκk′ ||2log||κκκk − κκκk′ ||
1≤k,k′≤K

].

Next, let Zst = ZK%%%
−1/2
K , Z0 = Zst , Z1 = Zst ∗ Irr, and Z2 = Zst ∗ Irr2 where ∗ denotes

column multiplication that is,
(
z11 z12
z21 z22

)

∗
(
Irr1
Irr2

)

=
(
z11Irr1 z12Irr1
z21Irr2 z22Irr2

)

.

Then denote Z∗ = [Z0 Z1 Z2]. Thus it is straightforward to rewrite (4.6) in the form of
(3.4), with Z replaced by Z∗, where it can be easily estimated using standard software.
As previously discussed, in order to analyze the data at hand several competing models

were considered. Specifically, we considered various models of the form (4.4) along with
our “default” bivariate model (4.6). One approach we used in arriving at a final model was
to compare model selection criteria for competing models. In particular, we used AIC; in
this context AIC is defined by (see Simonoff and Tsai 1999)

AIC ≡ log(RSSλ) + d ffit,λ
n

, (4.7)

where

RSSλ =
n∑

i=1
(yi − ŷi )2.
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Note that d ffit,λ = tr(Sλ), where

Sλ = C(C′C+ ()−1C′,

is the smoother matrix, C ≡ [X|Z] and

( ≡
(
0 0
0 σ 2ε cov(u)−1

)

(4.8)

(see Ruppert et al. 2003, p. 175). Although using AIC, as well as other information-based
model selection criteria, has become somewhat common when comparing mixed models
differing in their fixed effects, the appropriateness of such comparisons is questionable
if the models are estimated via REML (Verbeke and Molenberghs 2000). In fact, these
comparisons are incorrect as can be seen by considering the derivation of AIC through
Kullback–Leibler distances (Burnham and Anderson 2002). As a result of this limitation
we estimate all of the models using maximum likelihood. Although we incorporate the
use of AIC in our model selection procedure, ultimately we choose our model based on a
residual analysis and on scientific knowledge of the underlying experiment.
Specifically, the exploratory analysis we conducted coupled with scientific knowledge

regarding the specific experiment under consideration helped simplify (4.4) by assuming
h•(·) to be linear in t . Furthermore, the model that resulted from this assumption, using
low-rank (cubic) thin-plate splines, was deemed best among several competing models
investigated from this class of models using AIC. Subsequently this model was compared
with (4.6) and it was determined that the bivariate spatial model was superior. In addition
to having a smaller AIC value (6.44 versus 6.70) the model was favored on the merit
of several other measures. First the coefficient of determination (R2) was highest for the
bivariate model (0.72 versus next highest 0.61). More importantly the residuals from this
model appeared to be normally distributed (p-value for Shapiro–Wilks test = 0.14; along
with visual inspection) and uncorrelated while the other models yielded skewed residuals
(p-values for Shapiro-Wilks test all less than 0.01). In summary, the preferred model was
the “default” bivariate spatially nitrogen varying response curve.
One important aspect associated with any modeling endeavor is to attach measures of

uncertainty to the estimated quantities. By taking advantage of the mixed model formula-
tion of the P-spline these measures are straight forward to calculate. That is, letting

Mi = diagi
{
C(C′C+ ()−1C′

}
,

a pointwise confidence surface (with bias allowance) for yield is given by

Ŷi ± z(1−α/2)σ̂
2
ε

√
Mi . (4.9)

It should be noted that because in our analysis we have a large sample size (n = 396; al-
though the effective sample size may be smaller) we use the standard normal when calcu-
lating the (pointwise) confidence surface. However, in smaller sample sizes we can replace
the standard normal with the appropriate t-distribution (cf. Ruppert et al. 2003, p. 159).
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As depicted in Figure 2, several quantities are of interest to the practitioner in addition
to yield. One quantity of general interest is the rainfed yield, A0(xi , Ni ). However, without
measures of uncertainty this quantity is of diminished usefulness. In general, uncertainty
measures for this, or any, coefficient surface can be easily handled. To construct uncertainty
measures let P denote the number of columns in C and {I0, . . . , Id} be a partition of
the column indices in C such that I0 corresponds to β0 and I j corresponds to f j (·) for
j = 1, . . . , d (see Ruppert et al. 2003, p. 175). Further, define Em for m = 0, 1, 2 to be the
P × P matrix with ones in the diagonals corresponding to the partition of the columns of
C associated with the coefficient surface of interest Am and

MEmi = diagi
{
CEm(C′C+ ()−1C′

}
.

Then a pointwise confidence surface is given by

Âm(xi , Ni ) ± z(1−α/2)σ̂
2
ε

√
MEmi (4.10)

(see Ruppert et al. 2003, p. 175). It is often the case that the practitioner will be interested
in even more complicated quantities. For instance, the maximum response to irrigation is
defined to be the maximum within the imposed treatment range. For concave down forms
(A2(xi , Ni ) < 0), this can be found by evaluating (4.5) at the point where the derivative
is equal to zero. This value of irrigation can be found several different ways, one being to
estimate the derivative function directly. Then, using obvious notation,

Îrri,max = − Â1(xi , Ni )
2 Â2(xi , Ni )

(4.11)

defines the level of irrigation producing the maximum yield for a specific location xi and a
given nitrogen treatment. Note that choosing maximums in this manner rather than select-
ing the empirical maximum from the experiment allows intermediate levels of irrigation
to be selected as a hypothetical maximum. Additionally, uncertainty measures for this and
other complex quantities of interest can be found using the Delta method (see Bickel and
Doksum 2001) or by using the mixed model bootstrap (Kaurmann, Claeskens, and Op-
somer 2009). Furthermore, predicting yield for different treatment combinations at a spe-
cific spatial location in the field, for instance to determine optimal treatment combinations,
can be facilitated by “plugging in” the appropriate values to the estimated curve. Finally,
appropriate pointwise prediction surfaces can be constructed by

Ŷ j ± z(1−α/2)σ̂
2
ε

√
1+ ||* j ||2, (4.12)

where

||* j || =
√
C j (C′C+ ()−1C′C(C′C+ ()−1C′

j ,

and C j corresponds to the values associated with a new observation y j (see Ruppert et al.
2003, p. 138).
The original goals of the analysis undertaken in Sadler et al. (2002) were to evaluate the

mean response of corn to irrigation amounts on 12 soil map units and to compare the varia-
tion in the response within and among soil map units. Combining Figures 1 and 3 provides
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Actual Yield 1999 Estimated Yield 1999

Lower CI 1999 Upper CI 1999

6.5

7.3

8.1

8.9

9.7

10.5

Figure 3. Yield surfaces for 1999, including estimated yield along with upper and lower 95% (pointwise) con-
fidence surfaces.

a very lucid way of delivering this information graphically. As a result of these graphical
displays it can be determined that the response to irrigation is significantly different be-
tween the soil map units Cx (Coxville loam) and NkA (Norfolk lfs). However, for NkA
and NbA (Noboco lfs) there is no significant difference (see Figure 3). Similar types of
statements can be made regarding the response to rainfed yield, see Figure 4. While formal
economic and managerial implications are beyond the scope of this article, the methods
detailed here can be used to conduct such an analysis.

5. BAYESIAN IMPLEMENTATION

The method we propose can also be implemented in a Bayesian framework. In order to
carry out a Bayesian analysis we take advantage of the mixed model formulation in (3.4).
Following Ruppert et al. (2003), let u = (u0′,u1′,u2′)′ corresponding to the partition of
Z∗; the mixed model formulation specifies aN (0, σ 2ui I) prior on ui (i = 0, 1, 2) as well as
the likelihood

[y|βββ, u, σ 2u0 , σ 2u1 , σ 2u2 , σ 2ε ].

To completely specify a Bayesian model requires us to choose priors for (βββ, σ 2u0 , σ 2u1 ,

σ 2u2 , σ 2ε ). Since little information is known about βββ we impose an improper uniform prior,
that is, [βββ] ≡ 1. Although we chose an improper uniform prior for βββ one could choose the
proper priorN (0, σ 2β I) where σ 2β is large. This choice would produce a proper prior which
is essentially uniform over the range of βββ. Additionally, we chose inverse gamma priors
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1.1

5.2

6.2

7.2

8.2

9.2

Estimated Rainfed Yield – A0 1999

Lower CI – A0 1999 Upper CI – A0 1999

Figure 4. Estimated rainfed yield surface for 1999 (yield at irrigation = 0; i.e. A0), including upper and lower
95% (pointwise) confidence surfaces.

for σ 2ui (i = 0, 1, 2) and σ 2ε . That is, for i = 0, 1, 2

σ 2ui ∼ IG(Aui , Bui ),
σ 2ε ∼ IG(Aε, Bε),

where Aui , Bui , Aε, Bε are chosen equal to 0.1 and thus yield a noninformative but proper
prior (Ruppert et al. 2003, p. 280). The model is constructed as a hierarchical Bayes model
and invoking conditional independence properties the posterior distribution is given by

[βββ, u, σ 2u0 , σ 2u1 , σ 2u2 , σ 2ε |y] ∝ [y|βββ, u, σ 2ε ][u0|σ 2u0 ][u1|σ
2
u1 ]

×[u2|σ 2u2 ][σ
2
u0 ][σ

2
u1 ][σ

2
u2 ][βββ][σ

2
ε ].

Let ((( be defined as in (4.8). Then the full conditional of (βββ, u) is

[βββ, u|σ 2ε , σ 2u0 , σ 2u1 , σ 2u2 , y] ∼ N
{
(C′C+ ((()−1C′y, σ 2ε (C′C+ ((()−1

}
.

Further for i = 0, 1, 2

[σ 2ui |y, βββ, ui ] ∼ IG
(
Aui + 1

2
K , Bui + 1

2
||ui ||2

)
,
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where K denotes the number of knots. Finally the full conditional for σ 2ε is

[σ 2ε |y, βββ, ui σ 2u0 , σ 2u1 , σ 2u2 ] ∼ IG
(
Aε + 1

2
n, Bε + 1

2
||Y− Xβββ − Zu||2

)
.

Estimation of the model is then achieved using Gibbs sampling (e.g., Casella and George
1992). Although, for analysis, we implemented Gibbs sampling directly, it can also be
carried out using the software WinBUGS (Spiegelhalter et al. 2003; Crainiceanu et al.
2005).
We conducted a Bayesian analysis using a stand alone program implementing Gibbs

sampling. Specifically, we used 45,000 MCMC iterations and discarded the first 10,000
for burn-in. The results of the analysis corroborated the results found in Section 4 and
therefore are not presented here; rather they are available on request.

6. DISCUSSION

Studies of the effects of irrigation nonuniformity on the crop response comprise an
important topic in agricultural experiments. Spatial variation in crop response to water nat-
urally leads to the topic of variable-rate or site-specific agriculture. However, most often
the reported values are means across spatial replications. Further, crop response functions
have historically been determined under uniform irrigation management conditions. Thus
there has been widespread interest in whether relationships obtained under uniform man-
agement can be applied in site-specific agriculture. Finally properly constructed response
functions can be used to provide essential economic and managerial information that allow
the practitioner to make strategic decision about profitability.
In order to address these questions we develop spatially treatment varying coefficient

models. The models we propose are quite flexible and can be adapted in a straightforward
manner for use in a broad class of agricultural problems. Additionally, by taking advantage
of the mixed model representation of the P-spline (Brumback, Ruppert, and Wand 1999)
we are able to express our models in a form that can be easily fit using standard mixed
model software. In addition, the mixed model representation facilitates easy calculation of
uncertainty measures either analytically or through mixed model bootstrap methodology
(Kaurmann, Claeskens, and Opsomer 2009). Furthermore, we provide a Bayesian version
of the model that is equally easy to implement. Computer code is available upon request
from the first author for all analyses conducted in this article. Finally, we have demonstrated
the effectiveness of our approach through the analysis of site-specific agricultural data from
the USDA-ARS.
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