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ABSTRACT: Unit hydrographs for a gaged site can be determined from observed 
events. If several events are used for the derivation, several unit hydrographs result. 
An averaging procedure must be used to achieve a single representative unit hy- 
drograph. The variability is due to inherent uncertainty in the rainfall processes 
and to inadequacies in the basic model. It is appropriate to consider the unit 
hydrograph itself a random function. This paper develops a stochastic expression 
for the instantaneous unit hydrograph (IUH) based upon the Nash cascade. This 
conceptual model holds the number of reservoirs constant, while treating the res- 
ervoir constant as a random variable. Records of 24 storm events, observed on a 
12.2-km 2 watershed located in north central Missouri, were studied. The results of 
the study indicate that the stochastic model can be used to estimate the hydrograph. 

INTRODUCTION 

Unit hydrographs are important  tools in design hydrology. Often one is 
faced with the problem of producing a unit  hydrograph for a gaged wa- 
tershed. Producing such a unit  hydrograph for a gaged watershed also results 
in the problem of an embarrassment  of riches. Unit  hydrographs derived 
from several rainfall-runoff events result in several different unit  hydro- 
graphs. These differences result from errors in the observed rainfall and 
runoff from which the unit hydrograph was derived and from inadequacies 
in the linear system theory on which the unit  hydrograph is based. Regardless 
of the cause, a representative "average" unit  hydrograph must be selected. 
This selection is usually achieved by eye. In this paper, a mathematical  
approach based upon stochastic unit  hydrographs will be described. 

Conceptual models have long been used to describe watershed hydrologic 
response. Modeling watershed response using a linear system approach was 
introduced by Zoch (1934, 1936, 1937). He used a linear reservoir to describe 
the runoff process. This linear reservoir approach was expanded by Nash 
(1957) through the use of a cascade of identical linear reservoirs to represent 
a watershed. The result was a Gamma function representation of the unit  
hydrograph 

q(t )  = k ( n  - 1)! e (-t/k) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (1) 

in which q = discharge, t = time, n = number  of reservoirs, and k = 
reservoir constant. In general, when fitting a gamma unit  hydrograph to 
several rainfall-runoff events on a watershed, one finds a wide variability 
in n, the number  of reservoirs, and in k, the reservoir constant. These 
parameters should be treated as random quantities. Sarino and Serrano 
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(1990) presented a stochastic model which treated the parameter k as a 
random variable and derived the stochastic unit hydrograph when the num- 
ber of reservoirs in the cascade, n, is less than or equal to two. 

This paper extends the methodology presented by Sarino and Serrano 
(1990). A general form for the stochastic instantaneous unit hydrograph is 
derived. The theory is applied to a small watershed. Twenty-four storm 
events are investigated with the parameters n and k for each storm event 
determined using an optimization technique. The statistical features of the 
parameter k are displayed, and a comparison of the stochastic model with 
the classic approach for fitting the unit hydrograph to the study watershed 
is given. 

STOCHASTIC INSTANTANEOUS UNIT HYDROGRAPH 

The watershed runoff process is assumed to be a linear dynamic system 
that can be represented by a series of n identical linear reservoirs with 
uncertain reservoir constant k. Using the continuity equation and the stor- 
age-discharge rating equation for a linear reservoir, the outflow from res- 
ervoir i can be written 

qi = qi-1 -- k dqi 
d--7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (2) 

in which q~ = outflow rate from reservoir i, q~_l = the input rate (and 
outflow) from reservoir i - 1, and k = reservoir constant. Expressing the 
paramete rk  as its mean plus a fluctuation about the mean (k = k + k ' ,  
in which k = mean storage coefficient and k '  = the zero-mean random 
fluctuation) results in 

dqi 
q, = qi-1 - (k + k ' )  ~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (3) 

To develop an instantaneous unit hydrograph the input to the first reservoir 
should be a Dirac delta function, 8(0. Thus the outflow, ql,  from the first 
reservoir is governed by 

dq~ 
qx : ~(t) - (k + k ' )  - -~  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (4) 

Dividing by/~ and rearranging terms yields 

dq, ql 8(0 k'  d q l  

a---T + k t, k ,it . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ( s )  

In this form it is appropriate to seek a solution using Green's functions. 
The appropriate Green's function is given (Dettman 1962; Bender and Or- 
szag 1978) as the solution to 

dG 1 
d--7 + ~ G = a(t - s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (6) 

The result is 

G = e (t-s)/~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (7) 

The solution to (5) is then given by (Dettman 1962; Bender and Orszag 
1978) 
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q, = -~ e-t'-')/r'~(s) ds - ~ e-( '- ' ) /k ds ds . . . . . . . . . . . . . . . . . .  (8) 

Integration of the first term on the right is straightforward and leads to the 
partial solution 

k'  fo dqt 1 e_Ok _ --_ e -('-~)/k - -  ds . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (9) 
ql = -~ k ds 

Integration of the second term is more  difficult as it contains the ql, To 
alleviate this difficulty, one can expand the ql as an infinite series (Adomian 
1983; Serrano 1988; Sarino and Serrano 1990) 

ql = ~ + ~ + ~ + ~ + --- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (10) 

According to Adomian  (1983), this series can be considered a decomposit ion 
of q. That is, the approximation assumes that the function is decomposed 
into a sum of impulses, the same assumption used in finding Green ' s  func- 
tions. 

Making the substitution of (10) into (8) leads to 

ql = ~) - -~ e-(t- ')/k --ds ds - --~ e-(t- ')/k --ds ds . . . .  . . . . .  (11) 

The components ,  ~i, are determined recursively. Adomian  (1983) takes the 
first term to be the solution to the deterministic differential equation. That  
solution is the first term on the right of (9). Thus 

1 e_~/~ (12) = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

and in general 

k '~0  6 ; =  --=k e-('- ')/~ d~i-lds ds (i = 1, 2, . . .) . . . . . . . . . . . . . . . .  (13) 

The solution for a single reservoir is given by 

[1  K ' t  ( K ' ) 2 t ( t - 2 f c )  ( k ' ) 3 t ( 6 f c 2 - 6 l c t + t 2 ) +  . . . ]  
ql = e-'/k + - - ~  + 2/~5 + 6]~7 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (14) 

which agrees with the result of Sarino and Serrano (1990). 
A similar procedure must be applied to the second reservoir of the cas- 

cade. The basic equation is 

dqz (15) q2 = ql - (k + k ' ) ~  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

where ql is given by the solution for the first reservoir in (14). Rearranging 
(15) gives 

dq2 1 1 k '  dq2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (16) 
d---i- + fc q2 = ~ ql k dt 

Again using the Green 's  function, (16) becomes 
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q2 = -~ e-( ' - ' ) /kql  ds - --~ e - ( ' - ' ) / k -  ds (17) 
s . . . . . . . . . . . . . . . . . .  

The  first t e rm on the right is easily in tegra ted  whereas  the  second te rm 
contains the q2- As in the solut ion for  (9), q2 can be  d e c o m p o s e d  into 

q2 = ~ + ~'1 + ~ + "'" �9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (18) 

where the terms are  given by  

4; = -~ e-( ' - ' ) /~ql(s)  ds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (19) 

k ' i ~  e -(t-s)/k d~i-1 ds (i = 1, 2, . .) (20) 
~ ; -  k ds . . . . . . . . . . . . . . . . .  

Integrating (19) and (20) recursively leads to the solut ion for  the second 
reservoir  

1 K ' ( k  - t) (k ' )2(2k 2 - 4kt  + t 2) 
q2 = te-d" /~2 k4 + 2]~6 

(k')2(6/c 3 - 18/~2t + 9/~t 2 - t a) ] 
- 6k s + " .  . . . . . . . . . . . . . . . . . . . . . .  (21) 

/ 

This too agrees with the results of  Sarino and Ser rano  (1990) except  for  a 
typographical  sign e r ro r  in their  publ ished solution.  

Solutions for  addi t ional  reservoirs  in the  cascade follow the same pat tern .  
Solutions for the third and four th  reservoir  are 

t2e_Ok [.213 k(2/(2k 5- t) + (k ' )2(6k 2 4/~ 7 -  6/~t + t 2) q3 
I.... 

(k,)3(24k3 - 36k2t + 12kt 2 - t 3) + . . . ]  
(22) 

121C 9 J . . . . . . . . . . . . . . . . . . . .  

tSe_,/k [6k4 k'(3/~6k 6- t) + (k ' )2(12k 212k 8 -  8kt + t 2) q4 
L 

(k')(60]r 3 - 601~2t + 15kt 2 - t 3) ] 
- 3 6 / ~ 1 o  + " ' "  . . . . . . . . . . . . . . . . . . . . .  ( 2 3 )  

. . I  

Using the pat tern  developing th rough  (14), (21), (22), and (23), a general  
solution for  n reservoirs  is infer red  to be given by 

t._le_,/k ~ 1 K ' [ ( n  - 1)/~ - t] q.  
L (n - l)!k ~ (n - 1)!/~ "+2 

(k')Z[n(n - 1)/~2 - 2nt~t + t 2] + 
2(n - 1)!k "+4 

_ (K')3[(n + 1)n(n - 1)/~ 3 - 3(n + 1)n[c2t + 3(n + l ) k t  2 - t 3] + . . . '~ 
6(n - 1)!/~ "+6 J 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (24) 
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The general convergence of the decomposition series approach has been 
investigated by Adomian (1983) and Serrano (1988). Sarino and Serrano 
(1990) investigated the number of terms necessary for their particular ex- 
ample and showed that three were adequate. We will also show that three 
terms are adequate for our case. 

A more useful representation of this unit hydrograph is obtained by 
determining the mean of (24). Assuming that k '  is a Gaussian random 
variable, taking expectations on both sides of (24) and neglecting the very 
small terms lead to the mean function for random instantaneous unit hy- 
drograph 

E(q,) = t"-'e-'/~ { 1 cr2[n(n- 1)fc2- 2nkt + t2]} 
(n,- 1)!k- + ~ n  7 ] ~ k  -y~+4 . . .  (25) 

where E{ } denotes the expectation operator and ~r = the variance of k ' .  

COMPARISON WITH OBSERVED HYDROGRAPHS 

The stochastic unit hydrograph, (25), was applied to Goodwater Creek, 
a small watershed located in central Missouri. This 12.2 km 2 agricultural 
watershed was established as a research catchment by the U.S. Department 
of Agriculture, Agricultural Research Service in 1971. Rainfall is measured 
using an array of three recording raingages. The runoff is measured using 
a concrete broad-crested weir that provides control for low flows whereas 
a bridge opening provides control for high flows. Twenty-four of the largest 
observed rainfall-runoff events were selected for comparison. A Gamma 
function unit hydrograph was determined for each of these events. The 
base-flow was removed from the observed runoff using a straight line. The 
fitting parameters, n and k, for the Gamma function unit hydrograph were 
determined using the Hooke-Jeeves (1961) algorithm, which gives a least- 
squares best fit. A weighting system was used to emphasize the fitting near 
the peak discharge. The weight was the ratio of the observed discharge at 
the time to the peak discharge for the event. Unit hydrographs for time 
intervals of 1 hour, 30 min, and 15 min were derived. There was a slight 
difference between the 1-hour and the 30-min unit hydrographs, but no 
significant difference betweenthe 30-rain and the 15-min unit hydrographs. 
Thus, the 30-min unit hydrograph was selected as representative of the 
instantaneous unit hydrograph. 

The results of fitting the Gamma function to the observed data are listed 
in Table 1. The tabulated root-mean-square error (column labeled RMS) 
includes the weighting factor. The average value of n is 3.20, and the average 
for k is 1.87 hours. The variance for k is 0.44. The results demonstrate the 
variability typically found when unit hydrographs are determined from sev- 
eral storms. The Gamma function unit hydrograph using these average 
values will be called the "Gamma using simple means." Note that the coef- 
ficient of variation for n is 0.28 and for k is 0.24. Thus the uncertainty in 
n is similar to the uncertainty in the magnitude of k. In the stochastic model 
developed here the focus is limited to uncertainty in k. This data set, then, 
is not ideal for testing the stochastic model. 

The stochastic unit hydrography (24) was developed based upon the 
assumption of an integer number of reservoirs. To test the stochastic version, 
Gamma functions were fit to the observed rainfall-runoff data with fixed, 
integer values for n. The ability to fix the value of n and fit the function by 
optimizing on the parameter k is an advantage of using the Hooke-Jeeves 
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TABLE 1. Gamma Function Unit Hydrograph Parameters Determined by Fitting 
24 Events Observed on Goodwater Creek, North Central Missouri 

Flood 
(1) 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

[Average values] 
[Standard deviation] 
[Coefficient variation] 

Flood date 
(2) 

May 6, 1977 
May 30, 1974 
September 23, 1986 
July 3, 1980 
May 16, 1986 
April 30, 1983 
March 3, 1976 
June 8, 1974 
June 19, 1983 
July 24, 1981 
July 23, 1981 
November 19, 1985 
September 1, 1982 
December 2, 1982 
April 10, 1979 
June 19, 1981 
June 16, 1985 
October 31, 1984 
November 18, 1985 
August 1, 1978 
June 8, 1984 
August 29, 1982 
June 8, 1982 
August 26, 1982 

n 

(3) 

3.77 
1.53 
2.82 
2.47 
6.41 
3.31 
3.35 
2.95 
4.07 
3.21 
2.98 
3.58 
2.88 
2.84 
2.96 
2.57 
2.37 
3.23 
2.84 
2.91 
2.89 
4.45 
2.55 
3.74 

3.20 
0.89 
0.28 

k 
(hours) 

(4) 
1.15 
2.87 
1.41 
1.93 
0.92 
1.60 
1.49 
1.78 
1.41 
1.45 
1.92 
1.61 
2.00 
1.95 
1.93 
2.09 
2.31 
1.94 
2.09 
2.29 
2.36 
1.78 
2.59 
1.97 

1.87 
0.44 
0.24 

Error 
(rms) 

(5) 
10.06 
32.52 
18.46 
28.73 
10.54 
28.90 
21.30 
25.13 
32.81 
63.14 
58.22 
24.56 
64.20 
85.56 
23.83 

199.30 
55.30 
30.05 
25.19 
38.60 
58.81 
26.53 
21.98 
33.04 

42.37 

approach. The values of n = 2, 3, and 4 were selected and the results shown 
in Table 2. As one would expect, the best fit, in the least-squares sense, 
was with n = 3, close to the mean value for fitting with variable n. 

Using the best value for n (n = 3) and a statistical representation for k 
(mean = 1.89, variance = 0.31), one can compare the accuracy of the 
expected unit hydrograph (25) to the " G a m m a  using simple means"  with 
n and k from Table 1 (n = 3.2, k = 1.87). The results of this comparison 
are shown in Table 3. Note that in this table the root-mean-square error is 
not weighted. The average error for the stochastic unit  hydrograph is 59.91, 
which is slightly smaller than the 60.89 error for the " G a m m a  using simple 
means." 

EXTENDED STOCHASTIC UNIT HYDROGRAPH 

The factorial and the Gamma  function are closely related. This permits 
writing (24) in the form 

1 k ' [ (n  - 1)k - t] 
q. = t . - l e - , / k  F(n)kn r ( n ) k  n+2 
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TABLE 2. Results of Fitting Gamma Function Unit Hydrograph with Fixed Integer 
n to 24 Events Observed on Goodwater Creek 

Flood 
(1) 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

I Average values] 
Standard devia- 

tion] 

n = 2  n = 3  n = 4  

Flood date k Error k Error k Error 
(2) (3) (4) (5) (6) (7) (8) 

May 6, 1977 2.13 34.78 1.43 15.83 1.08 10.37 
May 30, 1974 2.18 38.48 1.43 70.73 1.07 95.43 
September 23, 1986 1.99 40.56 1.32 17.36 0.99 29.54 
July 3, 1980 2.39 37.77 1.58 28.22 1.17 41.60 
May 16, 1986 2.93 38.92 1.96 25.30 1.48 16.92 
April 30, 1983 2.62 76.81 1.76 29.86 1.32 44.27 
March 3, 1976 2.52 39.37 1.67 22.15 1.25 24.87 
June 8, 1974 2.62 52.04 1.75 25.80 1.31 35.16 
June 19, 1983 2.86 72.30 1.91 42.68 1.44 32.82 
July 24, 1981 2.41 63.66 1.55 63.56 1.16 66.41 
July 23, 1981 2.83 95.38 1.91 58.46 1.45 89.22 
November 19, 1985 2.87 69.31 1.92 31.22 1.45 27.95 
September 1, 1982 2.84 139.21 1.92 64.27 1.45 114.97 
December 2, 1982 2.76 107.89 1.85 85.95 1.39 93.33 
April 10, 1979 2.87 46.83 1.90 24.13 1.42 44.39 
June 19, 1981 2.67 221.22 1.80 199.31 1.37 214.63 
June 16, 1985 2.76 79.57 1.81 69.71 1.35 130.22 
October 31, 1984 3.12 87.86 2.09 31.91 1.57 49.84 
November 18, 1985 3.01 40.50 1.98 25.39 1.47 29.22 
August 1, 1978 3.36 50.46 2.22 39.72 1.67 60.58 
June 8, 1984 3.43 74.25 2.27 60.53 1.71 87.98 
August 29, 1982 3.92 62.89 2.63 36.09 1.98 26.70 
June 8, 1982 3.34 32.72 2.19 29.35 1.65 54.73 
August 26, 1982 3.62 55.98 2.44 33.53 1.84 36.18 

- -  2.84 69.12 1.89 47.13 1.42 60.72 

0.46 �9 - -  �9 0.31 �9 - -  �9 0.24 �9 - -  

(k')Z[n(n - 1)k 2 - 2nkt + t 2] 

2 F ( n ) k  "+4 

(k ' )3 [ (n  + 1 )n (n  - 1)k  3 - 3 (n  + 1)nk2t  + 3 (n  + 1)kt  2 - t31] 
(26) m 

6F(n)/r 

This  e q u a t i o n  can  be  u s e d  for  n t h a t  is n o t  a n  in tege r .  T h u s ,  a l t h o u g h  n o t  
direct ly de r ived  for  a f r ac t iona l  n u m b e r  o f  r e se rvo i r s ,  (26) c an  b e  a p p l i e d  
to such a case  so t h a t  it m a y  fit o b s e r v e d  d a t a  m o r e  prec ise ly .  S imi lar ly ,  
the  e q u a t i o n  for  t h e  m e a n  s tochas t i c  un i t  h y d r o g r a p h  (25) c an  b e  e x p r e s s e d  
in t e rms  of  t he  G a m m a  f u n c t i o n  wi th  t h e  r e su l t  

E(q,) = t n le-t/~ { 1 ~ r ~ [ n ( n - l ) k  2 - 2nkt + t2]) 
+ 2 F - ~ )  ~-~ +--g . . . . . . .  (27)  

w h e r e  E{ } = t he  e x p e c t a t i o n  o p e r a t o r  a n d  r 2 = t h e  v a r i a n c e  o f  k ' .  I f  t he  
p a r a m e t e r  K '  is c o n s t a n t  for  d i f f e r en t  s t o r m  e v e n t s ,  t h a t  is g = 0, (27) will  
r educe  to  (1) ,  t he  d e t e r m i n i s t i c  G a m m a  func t i on  un i t  h y d r o g r a p h .  
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TABLE 3. Comparison of Stochastic Unit Hydrograph (n = 3, k . . . .  ~--- 1.98, kvarzance 
= 0.31) with "Gamma Using Simple Means" of Table 1 

Flood 
(1) 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

[Average values] 

Flood date 
(2) 

May 6, 1977 
May 30, 1974 
September 23, 1986 
July 3, 1980 
May 16, 1986 
April 30, 1983 
March 3, 1976 
June 8, 1974 
June 19, 1983 
July 24, 1981 
July 23, 1981 
November 19, 1985 
September 1, 1982 
December 2, 1982 
April 10, 1979 
June 19, 1981 
June 16, 1985 
October 31, 1984 
November 18, 1985 
August 1, 1978 
June 8, 1984 
August 29, 1982 
June 8, 1982 
August 26, 1982 

Error (rms) 

Gamma using 
simple means 

(3) 

50.39 
113.60 
77.84 
52.14 
22.86 
60.04 
41.63 
36.24 
42.18 
59.18 
62.17 
32.39 
65.95 
82.20 
31.51 

174.53 
102.04 
35.36 
25.62 
49.88 
75.79 
71.75 
36.85 
59.27 

60.89 

Stochastic 
(n = 3) 

(4) 

43.87 
96.93 
67.18 
43.01 
28.30 
47.58 
35.80 
29.83 
47.13 
58.96 
58.04 
37.47 
61.93 
83.77 
25.73 

180.83 
73.23 
57.40 
28.13 
56.67 
85.91 
83.25 
37.34 
69.53 

59.91 

This ex tended result can also be compared  with the " G a m m a  using simple 
means" for n and k. The results are given in Table  4. Again ,  the stochastic 
unit hydrograph is slightly be t te r  than the " G a m m a  using simple means . "  
The root-mean-square  error  term for the integer value of n (n = 3) is slightly 
bet ter  than that for the noninteger  value (n = 3.2). We  at tr ibute this to 
the shift from using a weighted root -mean-square  error  to de termine  the 
coefficients to an unweighted root -mean-square  error  in this test. The results 
for all tests are quite close. 

CONVERGENCE OF DECOMPOSITION SERIES 

The convergence of  the decomposi t ion  series can be tes ted using the f i t ted 
values of n (n = 3.20) and a statistical representa t ion  for k (mean = 1.87, 
variance = 0.44). The  number  of  terms necessary in the decomposi t ion 
series when used in this part icular  case will be established. A realization of 
the random component  of k equal  to the variance of k '  allows a comparison 
of the magnitude of  the terms containing a different power  of k ' .  The results 
are il lustrated in Fig. 1. The value of the terms,  qT, q~, q~, and q:~, in the 
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TABLE 4. Comparison of Extended Stochastic Unit Hydrograph (n = 3.2, k . . . .  

= 1.87, k~,,~.,c~ = 0.31) with "Gamma Using Simple Means" of Table 1 

Flood 
(1) 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

Average values] 

Flood date 
(2) 

May 6, 1977 
May 30, 1974 
September 23, 1986 
July 3, 1980 
May 16, 1986 
April 30, 1983 
March 3, 1976 
June 8, 1974 
June 19, 1983 
July 24, 1981 
July 23, 1981 
November 19, 1985 
September 1, 1982 
December 2, 1982 
April 10, 1979 
June 19, 1981 
June 16, 1985 

Error (rms) 

Gamma using 
simple means 

October 31, 1984 
November 18, 1985 
August 1, 1978 
June 8, 1984 
August 29, 1982 
June 8, 1982 
August 26, 1982 

(3) 

50.39 
113.60 
77.84 
52.14 
22.86 
60.04 
41.63 
36.24 
42.18 
59.18 
62.17 
32.39 
65.95 
82.20 
31.51 

174.53 
102.04 
35.36 
25.62 
49.88 
75.79 
71.75 
36.85 
59.27 

60.89 

Stochastic 
(n = 3.2) 

(4) 

42.21 
111.30 
76.89 
53.58 
27.44 
60.37 
44.57 
39.04 
51.90 
60.86 
64.94 
36.56 
55.68 
85.02 
34.49 

174.46 
79.97 
44.70 
32.74 
46.40 
70.26 
69.74 
30.01 
55.07 

60.34 

decompos i t ion  ser ies  q ,  = q7 + q~ + q~ + q : / a r e  shown.  These  t e rms  
are given by 

[ ] 1 q~ = tn-le -t/k ~ (28) 

t"-~e-'/k t -  k'[(n - 1)k - i ' ~ )  ~2;-2 t ] j  . . . . . . . . . . . . . . . . . . . . . . . . . .  (29) q~ 

q,~= tn-le-a,{.(k')2[n(n-1) [~2 -2n[~t+ t2]} 
~ F - ~ , ~ 4 -  . . . . . . . . . . . . . . . . .  (30) 

q~ = t " -  ~e- '/~ 

[ (k ' ) 3 [ (n  + 1)n(n - 1)/} 3 -  3(n + 1)nkZt + 3(n + 1)/?t 2 -  t J l ]  
(31) o / 6r(n)]~ "+6 

These results indicate that only two terms in the random IUH,  that is q ,  
= q~ + q~, are enough to achieve an acceptable accuracy. 
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CONCLUSIONS 

Stochastic models can explicitly describe the variability in the properties 
used to fit models to rainfall and runoff data. A general form for the sto- 
chastic unit hydrograph was developed through an application of stochastic 
differential equations to the conceptual cascade of reservoirs model for the 
rainfall-runoff process. The method was applied to a small watershed in 
central Missouri. A test of convergence of the decomposition series used 
showed that three terms gave adequate results. The results showed a good 
agreement for the observed runoff hydrographs. 
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