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ABSTRACT:

In this two-part series, the writers investigate the role of artificial neural networks (ANNS) in

hydrology. ANNs are gaining popularity, as is evidenced by the increasing number of papers on this topic
appearing in hydrology journals, especially over the last decade. In terms of hydrologic applications, this mod-
eling tool is dtill in its nascent stages. The practicing hydrologic community is just becoming aware of the
potential of ANNSs as an alternative modeling tool. This paper is intended to serve as an introduction to ANNs
for hydrologists. Apart from descriptions of various aspects of ANNs and some guidelines on their usage, this
paper offers a brief comparison of the nature of ANNs and other modeling philosophies in hydrology. A dis-
cussion on the strengths and limitations of ANNSs brings out the similarities they have with other modeling

approaches, such as the physical model.

BACKGROUND

Thisisafirst part of atwo-part series prepared by the ASCE
Task Committee on Application of Artificial Neural Networks
in Hydrology. The material in this paper is of a basic nature
and is targeted towards hydrologists who are essentially be-
ginners in this field. The development of artificial neural net-
works (ANNS) began approximately 50 years ago (McCulloch
and Pitts 1943), inspired by a desire to understand the human
brain and emulate its functioning. Within the last decade, it
has experienced a huge resurgence due to the development of
more sophisticated algorithms and the emergence of powerful
computation tools. Extensive research has been devoted to in-
vestigating the potential of artificial neural networks (ANNS)
as computational tools that acquire, represent, and compute a
mapping from one multivariate input space to another (Was-
serman 1989). Mathematically, an ANN is often viewed as a
universal approximator. The ability to identify a relationship
from given patterns make it possible for ANNSs to solve large-
scale complex problems such as pattern recognition, nonlinear
modeling, classification, association, and control. Although the
idea of artificial neural networks was proposed by McCulloch
and Pitts (1943) over fifty years ago, the development of ANN
techniques has experienced a renaissance only in the last de-
cade due to Hopfield's effort (Hopfield 1982) in iterative auto-
associable neural networks. A tremendous growth in the inter-
est of this computationa mechanism has occurred since
Rumelhart et a. (1986) rediscovered a mathematically rigor-
ous theoretical framework for neural networks, i.e., back-prop-
agation agorithm. Consequently, ANNs have found applica-
tions in such diverse areas as neurophysiology, physics,
biomedical engineering, electrical engineering, computer sci-
ence, acoustics, cybernetics, robotics, image processing, fi-
nancing, and others.

Since the early nineties, ANNs have been successfully used
in hydrology-related areas such as rainfall-runoff modeling,
stream flow forecasting, ground-water modeling, water quality,
water management policy, precipitation forecasting, hydro-
logic time series, and reservoir operations. The application of
ANNSs as an dternative modeling tool for certain hydrologic
problems is the subject of the second part of the series. The
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goa of this paper is to give a brief description of artificia
neural networks, summarizing the commonly used algorithms
and guidelines for applying ANNs to hydrologic problems,
describing the similarities and differences between ANNs and
other modeling approaches, and discussing their strengths and
limitations.

INTRODUCTION TO ARTIFICIAL NEURAL
NETWORKS

An ANN is a massively parale-distributed information-
processing system that has certain performance characteristics
resembling biological neural networks of the human brain
(Haykin 1994). ANNSs have been developed as a generalization
of mathematical models of human cognition or neural biology.
Their development is based on the following rules:

1. Information processing occurs at many single elements
called nodes, also referred to as units, cells, or neurons,

2. Signals are passed between nodes through connection
links.

3. Each connection link has an associated weight that rep-
resents its connection strength.

4. Each node typically applies a nonlinear transformation
called an activation function to its net input to determine
its output signal.

A neural network is characterized by its architecture that rep-
resents the pattern of connection between nodes, its method
of determining the connection weights, and the activation
function (Fausett 1994). Caudill presented a comprehensive
description of neural networks in a series of papers (Caudill,
1987, 1988, 1989). A typical ANN consists of a number of
nodes that are organized according to a particular arrangement.
One way of classifying neural networks is by the number of
layers: single (Hopfield nets); bilayer (Carpenter/Grossberg
adaptive resonance networks); and multilayer (most backprop-
agation networks). ANNs can aso be categorized based on
the direction of information flow and processing. In a feed-
forward network, the nodes are generally arranged in layers,
starting from a first input layer and ending at the final output
layer. There can be several hidden layers, with each layer hav-
ing one or more nodes. Information passes from the input to
the output side. The nodes in one layer are connected to those
in the next, but not to those in the same layer. Thus, the output
of anode in alayer is only a dependent on the inputs it re-
ceives from previous layers and the corresponding weights.
On the other hand, in a recurrent ANN, information flows
through the nodes in both directions, from the input to the
output side and vice versa. This is generally achieved by re-
cycling previous network outputs as current inputs, thus allow-
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FIG. 1. Configuration of Feedforward Three-Layer ANN

ing for feedback. Sometimes, lateral connections are used
where nodes within a layer are also connected. This paper will
focus on feedforward and recurrent networks, since they are
commonly used in hydrologic problems.

In most networks, the input (first) layer receives the input
variables for the problem at hand. This consists of all quan-
tities that can influence the output. The input layer is thus
transparent and is a means of providing information to the
network. The last or output layer consists of values predicted
by the network and thus represents model output. The number
of hidden layers and the number of nodes in each hidden layer
are usually determined by a trial-and-error procedure. The
nodes within neighboring layers of the network are fully con-
nected by links. A synaptic weight is assigned to each link to
represent the relative connection strength of two nodes at both
ends in predicting the input-output relationship. Fig. 1 shows
the configuration of a feedforward three-layer ANN. These
kinds of ANNs can be used in a wide variety of problems,
such as storing and recalling data, classifying patterns, per-
forming general mapping from input pattern (space) to output
pattern (space), grouping similar patterns, or finding solutions
to constrained optimization problems. In this figure, X is a
system input vector composed of a number of causal variables
that influence system behavior, and Y is the system output
vector composed of a number of resulting variables that rep-
resent the system behavior.

MATHEMATICAL ASPECTS

A schematic diagram of a typical jth node is displayed in
Fig. 2. The inputs to such a node may come from system
causal variables or outputs of other nodes, depending on the
layer that the node is located in. These inputs form an input
vector X = (Xg, ..., %, ..., X). The sequence of weights
leading to the node form a weight vector W; = (W, ..., W;,

., W,;), where w; represents the connection weight from the
ith node in the preceding layer to this node.

The output of nodej, y;, is obtained by computing the value

FIG. 2. Schematic Diagram of Nodej
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of function f with respect to the inner product of vector X and
W; minus b;,, where b, is the threshold value, also called the
bias, associated with this node. In ANN parlance, the bias b,
of the node must be exceeded before it can be activated. The
following equation defines the operation:

i =f(X-W; — b) ()

The function f is called an activation function. Its functional
form determines the response of a node to the total input signal
it receives. The most commonly used form of f(-) in (1) isthe
sigmoid function, given as

1
1+ e

f(t) = @)

The sigmoid function is a bounded, monotonic, nondecreasing
function that provides a graded, nonlinear response. This func-
tion enables a network to map any nonlinear process. The pop-
ularity of the sigmoid function is partially attributed to the
simplicity of its derivative that will be used during the training
process. Some researchers also employ the bipolar sigmoid
and hyperbolic tangent as activation functions—both of which
are transformed from the sigmoid function. A number of such
nodes are organized to form an artificial neural network.

NETWORK TRAINING

In order for an ANN to generate an output vector Y = (v,
Yo, ..., Yp) thet is as close as possible to the target vector T
= (t, t, ..., t,), atraining process, also called learning, is
employed to find optimal weight matrices W and bias vectors
V, that minimize a predetermined error function that usually

has the form:
E=> > (v — t) €)

Here, t; is a component of the desired output T; y; = corre-
sponding ANN output; p = number of output nodes; and P =
number of training patterns. Training is a process by which
the connection weights of an ANN are adapted through a con-
tinuous process of stimulation by the environment in which
the network is embedded. There are primarily two types of
training—supervised and unsupervised. A supervised training
algorithm requires an externa teacher to guide the training
process. Thistypically impliesthat alarge number of examples
(or patterns) of inputs and outputs are required for training.
The inputs are cause variables of a system and the outputs are
the effect variables. This training procedure involves the iter-
ative adjustment and optimization of connection weights and
threshold values for each of nodes. The primary goal of train-
ing is to minimize the error function by searching for a set of
connection strengths and threshold values that cause the ANN
to produce outputs that are equal or close to targets. After
training has been accomplished, it is hoped the ANN is then
capable of generating reasonable results given new inputs. In
contrast, an unsupervised training algorithm does not involve
a teacher. During training, only an input data set is provided
to the ANN that automatically adapts its connection weights
to cluster those input patterns into classes with similar prop-
erties. There are occasions when a combination of these two
training strategies leads to reinforcement learning. A score or
grade is used to rate the network performance over a series of
training patterns. Most hydrologic applications have utilized
supervised training. The manner in which the nodes of an
ANN are structured is closely related to the algorithm used to
train it. The rest of this section includes severa commonly
used training agorithms.



Back-Propagation

Back-propagation is perhaps the most popular algorithm for
training ANNSs [see, for instance, Wasserman (1989) and Fau-
sett (1994) for a detailed description]. It is essentially a gra-
dient descent technique that minimizes the network error func-
tion [(3)]. Each input pattern of the training data set is passed
through the network from the input layer to the output layer.
The network output is compared with the desired target output,
and an error is computed based on (3). Thiserror is propagated
backward through the network to each node, and correspond-
ingly the connection weights are adjusted based on equation

oE
£* o + o*Aw;(n — 1) @)

Bl

Aw;(n) = —

where Aw;(n) and Aw;(n — 1) = weight increments between
node i and j during the nth and (n — 1)th pass, or epoch. A
similar equation is written for correction of bias values. In (4),
€ and « are called learning rate and momentum, respectively.
The momentum factor can speed up training in very flat
regions of the error surface and help prevent oscillations in
the weights. A learning rate is used to increase the chance of
avoiding the training process being trapped in a local minima
instead of global minima. The back-propagation algorithm in-
volves two steps. The first step is a forward pass, in which the
effect of the input is passed forward through the network to
reach the output layer. After the error is computed, a second
step starts backward through the network. The errors at the
output layer are propagated back toward the input layer with
the weights being modified according to (4). Back-propagation
is a first-order method based on the steepest gradient descent,
with the direction vector being set equal to the negative of the
gradient vector. Conseguently, the solution often follows azig-
zag path while trying to reach a minimum error position,
which may slow down the training process. It is also possible
for the training process to be trapped in the local minimum
despite the use of alearning rate. This algorithm is described
in detail in Appendix I. In the next section, we describe the
conjugate gradient method that can help alleviate this problem.

Conjugate Gradient Algorithms

The conjugate gradient method was first applied to general
unconstrained optimization problems by Fletcher and Reeves
(1964). Unlike back-propagation, the conjugate gradient
method does not proceed along the direction of the error gra-
dient, but in a direction orthogonal to the one in the previous
step. This prevents future steps from influencing the minimi-
zation achieved during the current step. Fletcher and Reeves
(1964) has shown that any minimization method devel oped by
the conjugate gradient algorithm is quadratically convergent.
If it is used in the case of the nonquadratic iteration problem,
such as error equation (3), a convergence criterion is required.
If P(n) is used to denote the direction vector at the nth iteration
of back-propagation, (4) can be rewritten as

W(n + 1) = W(n) + €P(n) 5)

where W(n + 1) and W(n) = weight vectors of some node at
the (n + 1)th and nth iteration; and € = learning rate (Haykin
1994). The initial direction vector is set equa to the negative
gradient vector g(n) at the initial point n = 0, i.e, P(0) =
—g(0). Each successive direction vector is computed by alin-
ear combination of the current gradient vector and the previous
direction vector as

P(n + 1) = —g(n + 1) + B(n)P(n) (6)

Here, B(n) is a time-dependent parameter, which Fletcher and
Reeves (1964) defined as

g'(n + Hgn + 1)
g'(mg(n)

The conjugate gradient algorithm can speed up the training
process in many cases.

B(n) = ™)

Radial Basis Function

A radia basis function (RBF) network can be considered as
a three-layer network in which the hidden layer performs a
fixed nonlinear transformation with no adjustable parameters
(Leonard et al. 1992). This layer consists of a number of nodes
and a parameter vector called a * center,”” which can be con-
sidered the weight vector of the hidden layer. The standard
Euclidean distance is used to measure how far an input vector
is from the center. For each node, the Euclidean distance be-
tween the center and the input vector of the network input is
computed and transformed by a nonlinear function that deter-
mines the output of the nodes in the hidden layer. The output
layer then combines these results in a linear fashion. The out-
put y of an RBF network is computed by the equation

y=f(U) = >, WR() + W, (®)

i=1
where w;, = connection weight between the hidden neuron and
output neuron; w, = bias; and x = input vector. The functions
R:R'0O Rareradia basis functions that have the general form

R(X) = ¢lx — cil ©)

The ¢(+) has amaximum value at the origin and decays rapidly
as its argument tends to infinity. The function of ¢(-) is re-
quired to approach zero as the Euclidean distance increases
between an input vector and the center. While there are various
choices for ¢(-), a general class of radial basis functions is
described by the Gaussian function

- —exp ( 2 L ) (10

wherec! =[cy, Co - - ., G iSthe center of the receptivefield;
and o;; = width of the Gaussian function. The major task of
RBF network design is to determine center c. The simplest
and easiest way may be to choose the centers randomly from
the training set. The second approach is to use the k-means
technique of clustering input training set into groups and
choose the center of each group as the center. Also, ¢ can be
treated as a network parameter along with w;, and adjusted
through error-correction training. After the center is deter-
mined, the connection weights w;, between the hidden layer
and output layer can be determined simply through ordinary
back-propagation training.

The primary difference between the RBF network and back-
propagation is in the nature of the nonlinearities associated
with hidden nodes. The nonlinearity in back-propagation is
implemented by a fixed function such as a sigmoid. The RBF
method, on the other hand, bases its nonlinearities on the data
in the training set. Once all the basis functions in the hidden
layer have been found, the network only needs to learn at the
output layer in a linear summation fashion.

Cascade Correlation Algorithm

Fahlman and Lebiere (1990) developed the cascade corre-
lation algorithm. It differs from other approaches in that it
starts with a minimal network without any hidden nodes and
grows during the training by adding new hidden units one by
one, maximizing the impact of the new node on the network
error, creating a multilayer structure. Once a new hidden node
has been added to the network, its input-side weights are fro-
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zen. The hidden nodes are trained in order to maximize the
correlation between output of the nodes and output error. A
training cycle is divided into two phases. First, the output
nodes are trained to minimize the total output error. Then a
new node is inserted and connected to every output note and
al previous hidden nodes. The new node is trained to correlate
with the output error. The addition of new hidden nodes is
continued until maximum correlation between the hidden
nodes and error is attained. The cascade correlation algorithm
is unique in that the architecture is determined as a part of the
training process. The steps for this algorithm may be sum-
marized as follows (adapted from Thirumaliah and Deo 1998):

1. Start with inputs and output nodes only.

2. Train the network over the training data set by the delta
rule.

3. Add a new hidden node. Connect it to al input nodes as
well as to other existing hidden nodes. Training of this
node is based on maximization of overall correlation S
between its output and network error:

S= 21D (Vp = V) (Epo— Eo) 1)

where V,, = output of the new hidden node for pattern p;
V = average output over al patterns; E,, = network out-
put error for output node o on pattern p; and E, = average
network error over al patterns. Pass the training data set
one by one and adjust input weights of the new node
after each training set until S does not change apprecia-
bly.

4. Once training of the new node is done, that node is in-
stalled as a hidden node of the network. The input side
weights are frozen, and the output side weights are
trained again.

5. Go to step 3, and repeat the procedure until the network
attains a prespecified minimum error within afixed num-
ber of training epochs.

Recurrent ANNs

We briefly describe recurrent networks herein without going
into the details of the algorithm. Such networks typically use
a variant of back-propagation for training. The spatial-tem-
poral variability of many hydrologic processes requires the
estimation procedure to be dynamic. Such a dynamic relation-
ship can be modeled by carefully chosen artificial neural net-
works. In the simplest case, a node computes the weighted
sum of its inputs passed through a nonlinear activation func-
tion. While feedforward neural networks are more popular,
they lack the feedback connections necessary to provide a dy-
namic mode. There are, however, more recent explorations of
neural networks that have feedback connections and are thus
inherently dynamic in nature.

Essentially, there are three ways that ““memory’’ can be in-
troduced into static neural networks. These are (in increasing
order of complexity and capability):

1. Tapped delay line models: In these models, the network
has past inputs explicitly available (through a tapped de-
lay line) to determine its response at a given point in
time (Mozer 1989). Thus, the tempora pattern is con-
verted to a spatial pattern which can then be learned
through, say, classic back-propagation.

2. Context models or partia recurrent models: These mod-
els retain the past output of nodes instead of retaining
the past raw inputs. For example, the output of the hid-
den layer neurons of a feedforward network can be used
as inputs to the network aong with the true inputs (El-
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man 1990; Kothari and Agyepong 1997). These ‘‘ net-
work derived’’ inputs are also called context inputs.
When the interconnections carrying the context inputs
are fixed, classical back-propagation can be used for
training the network. More complex variations of this
basic idea include self-feedback in the context inputs or
deriving the context inputs from other locations in the
network (Hertz and Palmer 1991).

3. Fully recurrent models: These models employ full feed-
back and interconnections between all nodes. Algorithms
to train fully recurrent models are significantly more
complex in terms of time and storage requirements (Pi-
neda 1987, 1989; Rohwer and Forrest 1987; Almeida
1988).

Context models fall somewhere between the simplicity of a
tapped delay line model and the complexity of afully recurrent
network. In many situations they provide competitive solu-
tions.

One such neural network algorithm that can be applied to
a network of arbitrary connectivity is recurrent back-propa-
gation (Pineda 1987, 1989; Rohwer and Forrest 1987; Almeida
1988). Islam and Kothari (2000) provide a brief overview of
recurrent back-propagation including its mathematical aspects
and implementation details.

Self-Organizing Feature Maps

Unlike feed-forward and recurrent neural networks that are
primarily used for approximation and classification, self-or-
ganizing feature maps (SOFMs) are typicaly used for density
estimation or for projecting patterns from high-dimensional to
low-dimensional space. This projection is nonparametric and
is obtained by mapping input patterns into the responses of
nodes arranged in a lattice (two-dimensional or sometimes
three-dimensional). SOFM, originally proposed by Kohonen
(1989, 1990), has found widespread use as a method of map-
ping for high-dimensional data. Compared with current ap-
proaches, SOFM-based representation of spatial data (e.g., hy-
draulic conductivity, precipitation, topography, etc.) offerstwo
distinct advantages: (1) nonparametric estimation of the un-
derlying distribution; and (2) a representation that fully pre-
serves the topological structure of the underlying distribution.
More specifically, SOFMs have a competitive layer of nodes,
arranged in alattice, with each node connected to all the inputs
through adjustable weights. At the beginning of the training
process, these weights are randomly initialized. When an input
pattern (say, soil moisture measurement at a location) is pre-
sented as an input, the first step in the training of a SOFM is
to compute a matching value for each node in the competitive
layer. This value measures the extent to which the weights of
each node match the corresponding values of the input pattern.
The node that has the closest match to the input is identified
as awinning unit. Interconnection weights of the winning unit
and its nearest neighbors (in the lattice) are updated to more
closely match the input pattern. Next, another input pattern is
chosen from the data set and the process is repeated until the
interconnection weights stop changing. The result of thistrain-
ing is atopological map in which the asymptotic local density
of the weights approaches that of the training data. Similarities
among patterns are mapped into similar weights of neighbor-
ing neurons. Islam and Kothari (2000) provide a brief over-
view of SOFM, including its mathematical aspects and imple-
mentation details, with an example of characterizing remotely
sensed soil moisture data over a large area

ANNs AND OTHER MODELING APPROACHES IN
HYDROLOGY

Hydrology is the scientific study of water and its properties,
distribution, and effects on the earth’s surface, soil, and at-



mosphere (McCuen 1997). Most hydrologic processes are
highly nonlinear and exhibit a high degree of spatial and tem-
poral variability. They are further complicated by uncertainty
in parameter estimates. Hydrol ogists are often confronted with
problems of prediction and estimation of quantities such as
runoff, precipitation, contaminant concentrations, and water
stages. This kind of information is required in hydrologic and
hydraulic engineering design as well as water resources man-
agement.

Currently used models in hydrology can be broadly grouped
under three categories. empirical, geomorphology based, and
physically based. Empirical models treat hydrologic systems
(such as a watershed) as a black-box and try to find a rela-
tionship between historical inputs (rainfall, temperature, etc.)
and outputs (watershed runoff measured at a stream gauge).
Lumped catchment models fall under this category (Blackie
and Eeles 1985). These methods need long historical records
and have no physical basis and, as such, are not applicable for
ungauged watersheds. An improvement over these kinds of
models are the geomorphology-based models (e.g., Gupta and
Waymire 1983; Corradini and Singh 1985). These models rep-
resent the watershed structure and the stream network well,
but various assumptions concerning the linearity of response
of individual watershed units (streams and overland sections)
need to be made.

Physically-based models represent the “‘physics’ as they
are best understood (Freeze and Harlan 1969). Typically, they
involve solution of a system of partial differential equations
that represent our best understanding of the flow processes
within the watershed. For most problems, a numerical solution
is sought by discretizing time-space dimensions into a discrete
set of nodes. This implies that such models work best when
data on the physical characteristics of the watershed are avail-
able at the model grid scale. This kind of data is rarely avail-
able, even in heavily instrumented research watersheds. The
problem of spatial variability and accurate representation of
the watershed has led to stochastic watershed models being
proposed to account for this uncertainty. Such models have
been used in hypothetical studies to demonstrate that the re-
sponse of watershed units is quite nonlinear. These models
suffer from problems such as identification, estimability, and
uniqueness of parameter estimation. Even with current com-
puting capabilities, physical representation of the watershed in
the model is, at best, an approximation. Physically-based mod-
els are applicable to ungauged watersheds in theory, but, al-
most invariably, they require historical data for model calibra-
tion purposes. Despite these limitations, these models have
proved to be very useful for many hydrologic problems when
utilized appropriately. Engineers and hydrologists continue to
model and predict the complex behavior of watershed systems
using physically-based models successfully. Michaud and So-
rooshian (1994) present a review of previous work comparing
the performance of simple versus physically-based models for
predicting watershed runoff. It is clear that this problem is still
unresolved. It is perhaps for this reason that alternative mod-
eling approaches are still being sought.

Based on this brief discussion, ANNS would have to be
classified as empirical models. We call this approach a
“model’’ as it has many features in common with other mod-
eling approaches in hydrology. The process of model selection
can be considered equivalent to the determination of appro-
priate network architecture. Similarly, model calibration and
validation can be identified with network training, cross train-
ing, and testing. In many respects, ANNs are similar to re-
gression-based models in hydrology, except that they do not
require specification of a mathematical form. In addition,
ANNSs are more versatile because of the freedom available
with the choice of number of hidden layers and the nodes

associated with each of these layers. The ANN structure allows
for information to be processed along multiple paths simulta-
neously, thereby offering opportunities for parallel implemen-
tation.

IMPORTANT ASPECTS OF ANN MODELING

There are no fixed rules for developing an ANN, even
though a general framework can be followed based on previ-
ous successful applications in engineering. Some issues that
typicaly arise while developing an ANN are briefly described
in this section.

Selection of Input and Output Variables

The goal of an ANN is to generalize a relationship of the
form

Y™ = £(X7) (12)

where X" is an n-dimensional input vector consisting of vari-
ables X3, ..., X, ..., X,; and Y™ is an mdimensional output
vector consisting of resulting variables of interest v, ..., V,

- Ym- We use the term ““generalize’’ to imply that the func-
tional form of f(-) in (12) will not be revealed explicitly, but
will be represented by the network parameters. In hydrology,
the values of x, can be causal variables such as rainfall, tem-
perature, previous flows, water levels, spatial locations, evap-
oration, basin area, elevation, slopes, pump operating status,
contaminant loads, meteorological data, and so on. The values
of y; can be hydrological responses such as runoff, streamflow,
ordinates of a hydrograph, optimal pumping patterns, rain
fields, hydraulic conductivities, contaminant concentrations,
and others.

The selection of an appropriate input vector that will allow
an ANN to successfully map to the desired output vector is
not a trivia task. Unlike physically-based models, the set of
variables that influence the system are not known a priori. In
this sense of nonlinear process identification, an ANN should
not be considered as a mere black box. A firm understanding
of the hydrologic system under consideration is an important
prerequisite for successful application of ANNSs. For instance,
physical insight into the problem being studied can lead to
better choice of input variables for proper mapping. This will
help in avoiding loss of information that may result if key
input variables are omitted, and also prevent inclusion of spu-
rious inputs that tend to confuse the training process. A sen-
sitivity analysis can be used to determine the relative impor-
tance of a variable (Maier and Dandy 1996) when sufficient
data is available. The input variables that do not have a sig-
nificant effect on the performance of an ANN can be trimmed
from the input vector, resulting in a more compact network.

Collecting and Preprocessing Data

Most hydrologic data are obtained either from gauges that
are placed on site or through remote sensing instruments. Also,
either an existing model or laboratory experiments can be used
to generate the data patterns for specific applications (French
et al. 1992; Ranjithan et al. 1993; Rogers and Dowla 1994;
Smith and Eli 1995; Minns and Hall 1996; and others). Again,
there appears to be no fixed method for determining the num-
ber of input-output data pairs that will be required. To ensure
a good approximation, Carpenter and Barthelemy (1994)
stated that the number of data pairs used for training should
be equal to or greater than the number of parameters (weights)
in the network. An optimal data set should be representative
of the probable occurrence of an input vector and should fa-
cilitate the mapping of the underlying nonlinear process. In-
clusion of unnecessary patterns could slow network learning.
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In contrast, an insufficient data set could lead to poor learning.
This makes it useful to analyze and preprocess the data before
it is used for an ANN application. Routine procedures such as
plotting and examining the statistics are sometimes effective
in judging the reliability of the data and possibly to remove
outliers. In many cases, the data needs to be encoded, nor-
malized, or transformed before being applied to an ANN.

Designing an ANN

This important step involves the determination of the ANN
architecture and selection of a training algorithm. An optimal
architecture may be considered the one yielding the best per-
formance in terms of error minimization, while retaining a
simple and compact structure. No unified theory exists for de-
termination of such an optimal ANN architecture. Often, more
than one ANN can generate similar results. The numbers of
input and output nodes are problem dependent. They are equal
to nand min (12). The flexibility lies in selecting the number
of hidden layers and in assigning the number of nodes to each
of these layers. A trial-and-error procedure is generally applied
to decide on the optimal architecture. As discussed earlier, the
cascade-correlation-training algorithm is an efficient method to
find the optimal architecture.

The potential of feed-forward neural networks can be at-
tributed to three main factors (Kothari and Agyepong 1996):
(1) multilayered feedforward neural networks do not need an
explicit mathematical equation relating inputs and outputs; (2)
a feed-forward network with a single hidden layer with an
arbitrary number of sigmoidal hidden nodes can approximate
any continuous function; and (3) a feedforward network with
a single hidden layer of m sigmoidal nodes achieves an inte-
grated squared error of O(1/m) while a linear combination of
a set of m fixed basis functions achieves an integrated squared
error of O(1/m??), where d is the dimension of the input (Bar-
ron 1993). Points 1 and 3 above refer to computational su-
periority of feedforward ANN, while 2 hints to an existence
theorem that establishes the capabilities of a feedforward
ANN. It does not, however, alow for a systematic determi-
nation of the number of hidden nodes to use in a given situ-
ation. The number of hidden layer neurons significantly influ-
ence the performance of a network; with too few nodes the
network will approximate poorly, while with too many nodes
it will overfit the training data.

The influence of the size of a neura network on its gener-
alization performance is well known (Baum and Haussler
1989; Agyepong and Kothari 1997). Bishop (1995) provides
an excellent review of proposed approaches that allow the de-
termination of network architecture with acceptable perfor-
mance on the training and generalization data. Some of the
popular techniques include network growing (e.g., Gallant
1986; Nadal 1989; Fahlman and Lebiere 1991; Cios and Liu
1992; Bose and Garga 1993; Kwok and Yeung 1995) and net-
work pruning (e.g., Mozer and Smolensky 1989; Karnin 1990;
LeCun et al. 1990; Hassibi and Stork 1993; Reed 1993). These
algorithms treat the network structure as an optimization pa-
rameter along with the weights. Pruning algorithms generally
start with a large network and proceed by removing weights
to which sensitivity of the error is minimal. Growing methods,
on the other hand, typically start with a small network and
add nodes with full connectivity to nodes in the existing net-
work when a suitably chosen measure (e.g., entropy, covari-
ance, etc.) stops decreasing. An aternative to these methods
is called soft weight sharing (Nowlan and Hinton 1992), where
groups of weights are encouraged to have equal values, allow-
ing for a reduction in the effective number of free parameters
in the network. Soft weight sharing can train a large network
with a small amount of training data (Agyepong and Kothari
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1997); however, to ensure convergence to good solutions,
proper initialization of the weights is necessary.

Agyepong and Kothari (1997) have shown that the use of
lateral connections in a feedforward network leads to a con-
trolled assignment of role in the hidden layer neurons begin-
ning with the fringe nodes, leaving nodes in the center of the
hidden layer unsupervised. Consequently, their network be-
haves like a growing agorithm without the explicit need to
add hidden units and like soft weight sharing due to function-
aly similar neurons in the center of the hidden layer. This
localization of the weight sharing algorithm of Agyepong and
Kothari (1997) allows a systematic determination of the num-
ber of hidden layer neurons needed for a given learning task.

Training and Cross Training

This is similar to the idea of calibration that is an integral
part of most hydrologic modeling studies. The available data
set is generally partitioned into three parts for training, cross
training, and validation. The purpose of training is to deter-
mine the set of connection weights and nodal thresholds that
cause the ANN to estimate outputs that are sufficiently close
to target values. The dataset reserved for training is used to
achieve this goal. This fraction of the complete data to be
employed for training should contain sufficient patterns so that
the network can mimic the underlying relationship between
input and output variables adequately. The weights and thresh-
old values are assigned small random values initially (usualy,
—0.3 ~ 0.3). During training, these are adjusted based on the
error, or the difference between ANN output and the target
responses. This adjustment can be continued recursively until
a weight space is found, which results in the smallest overall
prediction error. However, there is the danger of overtraining
a network in this fashion, also referred as overfitting. This
happens when the network parameters are too fine-tuned to
the training data set. It is as if the network, in the process of
trying to “learn’” the underlying rule, has started trying to fit
the noise component of the data as well. In other words, over-
training results in a network that memorizes the individual
examples, rather than trends in the data set as a whole. When
this happens, the network performs very well over the data set
used for training, but shows poor predictive capabilities when
supplied with data other than the training patterns. To prevent
this kind of overfitting, a cross training procedure is usually
recommended. The goal of this procedure is to stop training
when the network begins to overtrain. The second portion of
the data is reserved for this purpose. After the adjustment of
network parameters with each epoch, the network is used to
find the error for this data set. Initialy, errors for both the
training and cross training data sets go down. After an optimal
amount of training has been achieved, the errors for the train-
ing set continue to decrease, but those associated with the
cross training data set begin to rise. This is an indication that
further training will likely result in the network overfitting the
training data. The process of training is stopped at this time,
and the current set of weights and thresholds are assumed to
be the optimal values. The network is ready for use as a pre-
dictive tool. If the available data set is too small for partition-
ing, the simplest way to prevent overtraining is to stop training
when the mean square error ceases to decrease significantly.

Model Validation

Similar to other modeling approaches in hydrology, the per-
formance of a trained ANN can be fairly evaluated by sub-
jecting it to new patterns that it has not seen during training.
The performance of the network can be determined by com-
puting the percentage error between predicted and desired val-
ues. In addition, plotting the model output versus desired re-



sponse can aso be used to assess ANN performance. Since
finding optimal network parameters is essentially a minimi-
zation process, it is advisable to repeat the training and vali-
dation processes several times to ensure that satisfactory re-
sults have been obtained.

Some Other Issues

Some ANN applications (see Part 1l of this two-part paper)
have stressed the importance of scaling the input/output quan-
tities before presenting them to the network. For problems ex-
hibiting high nonlinearity, the variables are scaled to fall be-
tween a range of O to 1, or some other suitable range. This
kind of scaling tends to smooth the solution space and aver-
ages out some of the noise effects. However, there is some
danger of losing information through this procedure.

Initialization of weights and threshold valuesis an important
consideration. The closer the initial guess is to the optimum
weight space, the faster the training process. However, there
is no way of making a good initial guess of the weights, and
they areinitialized in arandom fashion. Usually, small random
weights are suggested.

STRENGTHS AND LIMITATIONS

The following are some of the reasons ANNs have become
an attractive computational tool:

1. They are able to recognize the relation between the input
and output variables without explicit physical consider-
ation.

2. They work well even when the training sets contain noise
and measurement errors.

3. They are able to adapt to solutions over time to com-
pensate for changing circumstances.

4. They possess other inherent information-processing char-
acteristics and once trained are easy to use.

Very often, in hydrology, the problems are not clearly un-
derstood or are too ill-defined for a meaningful analysis using
physically-based methods. Even when such models are avail-
able, they have to rely on assumptions that make ANNs seem
more attractive. Moreover, ANNs routinely model the non-
linearity of the underlying process without having to solve
complex partial differential equations. Unlike regression-based
techniques, there is no need to make assumptions about the
mathematical form of the relationship between input and out-
put. The presence of noise in the inputs and outputs is handled
by an ANN without severe loss of accuracy because of dis-
tributed processing within the network. This, along with the
nonlinear nature of the activation function, truly enhances the
generalizing capabilities of ANNs and makes them desirable
for alarge class of problems in hydrology.

Although several studies indicate that ANNs have proven to
be potentialy useful tools in hydrology (see Part 11), their dis-
advantages should not be ignored. The success of an ANN
application depends both on the quality and the quantity of
data available. This requirement cannot be easily met, as many
hydrologic records do not go back far enough. Quite often,
the requisite data is not available and has to be generated by
other means, such as another well-tested model. Even when
long historic records are available, we are not certain that con-
ditions remained homogeneous over this time span. Therefore,
data sets recorded over a system that is relatively stable and
unaffected by human activities are desirable. Representing
temporal variations is often achieved by including past inputs/
outputs as current inputs. However, it is not immediately clear
how far back one must go in the past to include temporal
effects. This makes the resulting ANN structure more compli-

cated. Yet another major limitation of ANNSs is in the lack of
physical concepts and relations. This has been one of the pri-
mary reasons for the skeptical attitude towards this method-
ology. The fact that there is no standardized way of selecting
network architecture also receives criticism. The choice of net-
work architecture, training algorithm, and definition of error
are usually determined by the user’s past experience and pref-
erence, rather than the physical aspects of the problem.

CONCLUSION

This paper serves as an introduction to artificial neural net-
works (ANNS) with emphasis on their application to hydro-
logic problems. It presents a brief description of ANNs, the
underlying concept and mathematical aspects, and the role of
ANNSs relative to other modeling approaches in hydrology.
Some popular ANN architectures and agorithms are dis-
cussed. Guidelines for application of ANNs to problems in
hydrology are presented. The merits and shortcomings of this
methodology are discussed. The second paper takes a closer
look at what impact ANNs have had in several areas of hy-
drology. Towards the end of that paper, the current lacunae in
ANN applications are revisited, with some suggestions for fu-
ture research in this area.

APPENDIX|. BACK-PROPAGATION ALGORITHM

In a multilayer feed-forward neural network, connections
between nodes of different layers exist, and no such connec-
tions exist between the nodes within the same layer. Theinputs
are presented to a network at the input layer, and the stimu-
lation is passed through the network from input side to output
side. Such a network, with learning governed by a generalized
delta rule, is typicaly called a back-propagation neural net-
work. This agorithm was originally developed by Werbos
(1974) in his Ph.D. dissertation at Harvard University. Nev-
ertheless, its powerfulness was not recognized and appreciated
for many years. Rumelhart et a. (1986) rediscovered the al-
gorithm and made it popular by demonstrating how to train
the hidden neurons for a complex mapping problems. Their
work played a crucia role in the resurrection of the whole
neural network field. The network consists of an input layer,
an output layer, and a number of hidden layers. At each node
in a layer the information is received, stored, processed, and
communicated further to nodes in the next layer. All the
weights are initialized to small random numeric values at the
beginning of training. These weights are updated or modified
iteratively using the generalized delta rule or the steepest-gra-
dient descent principle. The training process is stopped when
no appreciable change is observed in the values associated
with the connection links or some termination criterion is sat-
isfied. Thus, the training of a backpropagation network con-
sists of two phases: a forward pass, during which the process-
ing of information occurs from the input layer to the output
layer; and a backward pass, when the error from the output
layer is propagated back to the input layer and the intercon-
nections are modified. The agorithm, is given by Fausett
(1994), is as follows:

e Step 0. Initialize weights. (Set to small random values.)
e Step 1. While stopping condition is false, do Steps 2-9.
e Step 2. For each training pair of set, do Steps 3—8.

Feed-forward:

e Step 3. Each input unit (X,,i =1, 2, ..., n) receivesinput
signal x; and sends this signal to all unitsin the next layer
(the hidden units).
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e Step 4. Each hidden unit (Z,j =1, 2, ...
weighted input signals.

Zin=vy+ > xv for i=1,2...,n  (13)
where v;; = connection weight and v,; = bias value, and
appliesits activation function to compute its output signal:

z, = f(zin) (14)

and sends this signal to all units in the following layer
(output nodes). Typicaly, “f’’ is the sigmoidal nonlinear
function, defined as

, P) sums its

1

)

(15)
e Step 5. Each output unit (Y, k=1, 2, ..., m) sums its

weighted input signals
Yin = wo + > zw for j=1,2,...,p (16)

and applies its activation function to compute its output
signal:

Yie = f(Ying (17)
Back-propagation of error:
e Step 6. Each output unit (Y,, k=1, 2, ..., m) receives

atarget pattern corresponding to the input training pattern,
computes its error information term

B = (t — yi) '(Ying 18

calculates its weight correction term (used to update wj,
later)

Awy = 88,Z (19

calculates its bias correction term (used to update wg,
later)

AWy = ad, (20)

and sends 8, to nodes in the previous layer.
e Step 7. Each hidden unit (Z,j =1, 2, ...
delta inputs (from units in the next layer)

din = > s for k=1,2,..., m (21)

multiplies by the derivative of its activation function to
calculate its error information term

8, = dinf'(Zin) (22)

calculates its weight correction term (used to update v;;
later)

, P) sums its

Vv = 98;% (23)

and calculates its bias correction term (used to update v,;
later)

Avy = a; (24)
Update weights and biases:

e Step 8. Each output node Y, k = 1, 2, ..., m) updates
its bias and weights (j =0, 1, ..., p):
W (new) = wy(old) + Aw, (25)
Each hidden node (Z, j = 1, 2, ..., p) updates its bias
and weights (1 =0, 1, ..., n):
vi(new) = v;(old) + Ay, (26)

e Step 9. Test stopping condition.
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In spite of the potentia capabilities of back-propagation, it
suffers from several drawbacks that can lead to problems dur-
ing training. The most commonly faced problems are long,
ambiguous training process, network paralysis, and local min-
ima.

For complex problems, the direction of error reduction with
number of epochs is not very clear and may lead to some
confusion regarding the continuation of the training process.
The training process can be very long and sometimes futile
for a bad initial weight space. The two main reasons behind
slow learning are problems of step size and moving target
(Fahlman and Lebiere 1990). During the search for an optimal
weight space, the error is continuously reduced by reducing
the step size until an optima minimum is reached. For most
practical scenarios, thislocal minimum may yield good results
or may be the global minimum itself. However, no fixed guide-
lines are available for the rate at which this step size should
be reduced during network training. Reducing the step size by
infinitesimal amounts may not be practically feasible. A large
step size may propel the search in a very different region of
weight space and may yield a poor solution. The problem of
moving target arises as the weights have to continuously adjust
their values from one output to another for successive patterns.
The change in a weight during one training pass may be nul-
lified in the next pass because of a different training pattern.
Thus, the attenuation and dilution of weight changes aso
slows down the process of training.

The problem of network paralysis arises due to the large
adjustment of weights in the initial epochs. When all the nodes
produce large outputs, the derivative of the activation function
can become very small. Since the error sent back from the
output layer in the backward pass (or the weight adjustment)
is proportional to the derivative of the activation function, the
learning process slows down, and weight adjustment might be
insignificant. This problem is usually avoided by reducing the
step size or learning rate. The problem of local minimaisfaced
by many traditional optimization methods, and such isthe case
for neural networks. This problem arises due to downward
search in a complex, high-dimensional space full of hills, val-
leys, saddle points, etc. By changing the learning rate or step
size, this problem can be avoided to some degree. Wasserman
(1989) proposed a back-propagation network that uses certain
statistical methods to find global minima.
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