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The ability of soil to store and supply water to plants is one of its 
fundamental properties related to crop production. Knowledge 

about plant-available water (PAW) capacity (PAWc) is useful for 
many soil management practices as well as for crop yield model-
ing applications. Quantitative determination of PAWc, however, is 
not an easy task. Determination of PAW involves determining the 
two limits (i.e., fi eld capacity and permanent wilting point), which 
can be either monitored from fi eld measurements (Ritchie, 1981) 
or approximated under laboratory conditions (Jamison and Kroth, 
1958). The former requires permanent installation of soil moisture 

devices and repeated monitoring, while the latter involves destruc-
tive sampling and water extraction. Either way, the time-consum-
ing nature prohibits extensive assessment of the spatial variability of 
this soil property for a given fi eld or watershed. Further diffi culties 
include the limited value of soil survey information (e.g., texture and 
bulk density) for estimating PAW due to potentially large errors and 
bias in the estimation (Fortin and Moon, 1999).

A key component of site-specifi c management is quantifi -
cation of the spatial variability of soil properties that affect crop 
yields (Atherton et al., 1999). A map of PAWc would help advance 
management decisions such as adjusting fertilizer input and opti-
mizing water management options. This information could also 
be incorporated in management zone delineation or in crop mod-
els. To meet this need, alternative approaches have been proposed 
(Timlin et al., 2001b; Morgan et al., 2003). Timlin et al. (2001b) 
used a simple water budget model to simulate yield, and then 
applied a procedure to match the simulation to observed yield. 
During the matching procedure, the amount of PAW was varied 
until the closest match between predicted and observed yield was 
found. Then available water was estimated at the closest match. 
By similar principles, Morgan et al. (2003) devised an inverse yield 
model to create a “look-up” table where corn yields were simu-
lated at a range of PAW levels. Using this correspondence, a map 
of PAW could be inversely generated based on yield maps. These 
approaches take advantage of readily available yield data made 
possible through yield-mapping technologies and assume that 
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Information on plant-available water (PAW) capacity (PAWc) variation within a fi eld is useful 
for site-specifi c management. For claypan soils, established relationships between soil appar-
ent electrical conductivity (ECa) and topsoil thickness suggested the hypothesis that profi le 
PAWc could be estimated by assuming a two-layer soil composition, a silt loam topsoil layer 
and a silty clay sublayer, with known PAW fraction values for each layer. Objectives were (i) 
to investigate the direct relationships between ECa and the upper and lower limits of PAWc, 
and (ii) to test the previously stated hypothesis. Nineteen and 18 soil profi le samples were 
taken from two Missouri claypan fi elds in October 2005. The lower limit of PAWc was deter-
mined at −1500 kPa soil water pressure. Samples were taken again from the same locations in 
March 2006 to determine the upper limit of PAWc. Calculations were on a 1.2-m basis. The 
direct relationship between ECa

−1 and profi le PAW (PAW1.2) was signifi cant, with regression 
r2 values of 0.67 and 0.87 and RMSEs of 30 and 20 mm for Fields 1 and 2, respectively. The 
RMSEs for two-layer-estimated PAW1.2 were 14 and 16 mm for Fields 1 and 2, respectively, 
or 7.6 and 8.6% of the respective mean measured PAW1.2. With the two-layer approach, 
some underestimates of PAW1.2 resulted from underestimation of topsoil thickness, whereas 
overestimates were attributed to soil horizons being short of fi eld capacity at sampling due to 
slow recharge. The resulting fi eld-scale PAWc information is useful in site-specifi c decision 
making for soil and water management.

Estimating Plant-Available Water Capacity
for Claypan Landscapes Using Apparent
Electrical Conductivity
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observed yield is only affected by PAW. Through inherent bio-
physical relationships between crop yield and water balance, the 
yield information can be transferred into PAW information.

Apparent profi le soil electrical conductivity (ECa) has 
become an important tool in site-specifi c management prac-
tices because it relates to a wide range of soil chemical and 
physical properties that affect crop yield (McNeill, 1992; 
Lund et al., 2001; Kitchen et al., 2003; Sudduth et al., 2005). 
Applications of mapped ECa have included characterizing soil 
spatial variability (Corwin and Lesch, 2005) and delineating 
management zones (Kitchen et al., 2005; Jaynes et al., 2005). 
The direct regression relationships between ECa and PAW, 
however, have been examined by only a few (Morgan et al., 
2000; Wong et al., 2006), even though high and consistent 
correlations between ECa and soil water content on nonsaline 
soils have been reported by many (Kachanoski et al., 1988, 
1990; Sheets and Hendrickx, 1995; Khakural et al., 1998; 
Sudduth et al., 2001; Reedy and Scanlon, 2003).

For claypan soil landscapes in the U.S. Midwest, the con-
trasting electrical properties of the claypan and the overlying 
topsoil have lent ECa a unique utility of estimating and map-
ping spatially variable topsoil thickness above the claypan hori-
zon (Doolittle et al., 1994; Sudduth et al., 2003; Sudduth and 
Kitchen, 2006). Topsoil thickness has been found to highly cor-
relate with crop yield, especially in dry growing seasons (Gantzer 
and McCarty, 1987; Kitchen et al., 1999), because it serves as 
a crucial reservoir for PAW and nutrients and provides a suit-
able rooting environment for plants (Timlin et al., 2001a). 
Compared with the topsoil, the claypan horizon has a substan-
tially lower PAWc due to high clay content (usually >50%), low 
organic matter, and poorly developed structure (Jamison and 
Kroth, 1958). Yet roots of annual crops, e.g., corn (Zea mays 
L.) and soybean [Glycine max (L.) Merr.], can penetrate through 
the claypan down to a depth of 1.35 m (Grecu et al., 1988; 
Myers et al., 2007). These characteristics of claypan soils led to 
the formulation of our study hypothesis: the maximum PAWc 
can be approximated with a hypothetical two-layer soil profi le 
comprised of a topsoil layer (usually silt loam in texture) and a 
sublayer (silty clay or clay in texture) to the bottom of the root-
ing depth. The proposed procedure, if proven, would provide 
quick and inexpensive PAWc estimates at high spatial resolution 
because topsoil thickness can be estimated by ECa. The math-
ematical representation for this hypothesis is given as:

topsoil SIL subsoil SICPAW PAW PAWc T T= +  [1]

where PAWc is the profi le PAW capacity to the bottom of a 
presumed rooting depth; Ttopsoil and Tsubsoil are thicknesses of 
the topsoil layer and sublayer, respectively (Tsubsoil is obtained 
by subtracting Ttopsoil [estimated using ECa] from the root-
ing depth); and PAWSIL and PAWSIC are PAW fraction values 
for the two soil textures obtained from the USDA-NRCS soil 
survey (Young et al., 2001; NRCS staff, personal communica-
tion, 2006).

Thus, the specifi c objectives of this study were to: (i) inves-
tigate direct relationships between ECa and profi le PAW and 
its upper and lower limits, and (ii) test how well the hypothesis 
expressed in Eq. [1] can approximate profi le PAW at a fi eld scale.

MATERIALS AND METHODS
Study Sites

Study sites were two claypan soil fi elds, Field 1 (39°38′N, 92°20′W) 
and Field 2 (39°38′N, 92°25′W), located within 2 km of each other near 
Centralia in central Missouri. Field 1 was 28 ha and Field 2 13 ha in size. 
Elevation ranged from 262 to 266 m in Field 1 and from 256 to 266 m in 
Field 2. The primary soil series found in the study fi elds included Mexico 
(fi ne, smectitic, mesic Aeric Vertic Epiaqualfs), Adco (fi ne, smectitic, mesic 
Aeric Vertic Albaqualfs), both with 1 to 5% slope, and Leonard (fi ne, smec-
titic, mesic Vertic Epiaqualfs), with 2 to 14% slope. All these soil series are 
somewhat poorly or poorly (i.e., Leonard) drained (Soil Survey Staff, 2006). 
They are typical claypan soils characterized by an abrupt claypan horizon 
at varying depths, depending generally on slope and landscape position. 
The depth to claypan ranged from several centimeters in eroded areas to 
>1 m in depositional areas. The texture above the claypan ranged from the 
typical silt loam texture to an occasional silty clay loam texture. Both fi elds 
had been managed in a corn–soybean rotation with mulch tillage for about 
20 yr. No-till was initiated in 2004 on Field 1 and in 1997 on Field 2. The 
mean annual temperature in the area is 12°C, and the mean annual precipi-
tation is 96.9 cm (National Climate Data Center, 2002).

Sampling Procedures and Laboratory Analyses
Profi le samples were taken at 19 locations in Field 1 and 18 locations 

in Field 2 in October 2005 using a hydraulic soil coring probe (38.1-mm 
diameter). The sampling sites were distributed throughout the fi elds such 
that major landscape features were represented. Soil properties and charac-
teristics (e.g., topsoil thickness, horizon designation, and horizon texture) 
were already available at these sites as they had served as calibration sites for 
other research projects (e.g., Sudduth et al., 2003, 2005). The texture data 
indicated that there were four textural classes found at these sites: silt loam 
(SIL), silty clay loam (SICL), silty clay (SIC), and clay (C). Topsoil was con-
sidered as those soil horizons above the claypan whose texture was silt loam 
or, occasionally, silty clay loam. For sites where the surface texture was silty 
clay, topsoil thickness was considered zero (i.e., high-erosion areas). During 
the sampling for this investigation, profi le horizons were reexamined guided 
by the original designation. Horizon lengths were recorded, and then soil 
profi les were separated by horizon and each horizon sample was collected 
and sealed in a plastic bag. These horizon samples were air dried for 2 wk 
before an air-dry weight was obtained. A subsample of about 50 g was oven 
dried to determine water content for the air-dry horizon samples. Thus, 
bulk density for each horizon was calculated using air-dry soil mass, water 
content of the air-dried subsample, and sample volume. Bulk density was 
used to convert gravimetric water content to volumetric water content. The 
remaining samples were broken, and small aggregates were used to deter-
mine water retention at −33 kPa. Further, sample material passed through 
a 2-mm sieve was used to determine water retention at −1500 kPa, which 
was used as the lower limit (LL) of PAWc. Water retention was determined 
using pressure chambers (Dane and Hopmans, 2002).

The same sites were resampled on 29 Mar. 2006, following wintertime 
profi le recharge, to determine fi eld capacity, which was used as the upper 
limit (UL) of PAWc. An 11-mm rainfall was recorded 2 d before the sam-
pling. Sampling procedures followed those of the October sampling, using 
the same horizon designations and depths. There was a cumulative 19-cm 
defi cit from normal precipitation during the recharge months (October–
March; National Climate Data Center, 2002). To ensure the soil condition 
was as close to fi eld capacity as possible before sampling, several test samples 
were taken approximately 2 wk before to compare with historical neutron 
probe moisture data that had been collected from some of the sampling sites 
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at the beginning of June 1997 (seven sites in Field 1) and 1999 (fi ve sites 
in Field 2) after profi le recharge. We judged these neutron data to represent 
fi eld capacity conditions, especially at deeper depths, because precipitation 
leading up to the measurement dates was 11 and 18 cm above normal for 
1997 and 1999, respectively (from the previous October–May). The aver-
age water content measured by the neutron probe on a 1.2-m profi le basis 
was 495 and 483 mm for Fields 1 and 2, respectively. A good comparison 
was obtained between the neutron-probe fi eld capacity determination and 
the preliminary sampling in mid-March 2006.

For the actual samples, PAW was determined by the difference 
between the UL and LL values for each horizon. Profi le upper limit 
(UL1.2) and lower limit (LL1.2) were obtained as a depth-weighted aver-
age of soil horizons to a 1.2-m depth. Profi le PAW (PAW1.2) was then 
the difference between the UL1.2 and LL1.2.

DATA ANALYSIS PROCEDURES
Validation of Estimation Equations for 
Topsoil Thickness

Our previous research determined regression relationships of soil ECa 
to topsoil thickness for the two fi elds (Sudduth et al., 2003; Sudduth and 
Kitchen, 2006). Soil ECa data used to develop these relationships were col-
lected at different times of the year during multiple years using several types 
of commercial ECa sensors. The sensors included Geonics EM38 (Geonics 
Ltd, Mississauga, ON, Canada), Veris 3100 (Veris Technologies, Salina, 
KS), and DUALEM-2S (Dualem Inc., Milton, ON, Canada). The EM38 
had a vertical dipole and a horizontal dipole with respective effective sensing 
depths of 1.5 and 0.75 m. The Veris 3100 used rolling coulter electrodes to 
directly sense both shallow (0.3-m effective sensing depth) and deep (1.0-
m effective sensing depth) readings of ECa. The Dualem-2S sensor was 
designed with a single transmitter and two receivers, allowing simultaneous 
shallow and deep ECa readings, with respective effective sensing depths of 
1.2 and 3.0 m. Additional details on the sensors and ECa data collection 
can be found in Sudduth et al. (2003) and Sudduth and Kitchen (2006). 
The regression equations of ECa vs. topsoil thickness were different due to 
sensor design, effective sensing depth, and variation in fi eld conditions (e.g., 
moisture and temperature) when ECa data were acquired. Furthermore, 
the samples for the current study differed slightly in measured topsoil 
thickness from the original data used to develop the regression equations 
because of local variations in topsoil thickness and the subjectivity involved 
in determining the boundary of the claypan horizon using visual cues in the 
fi eld. Therefore, a validation of the existing regression equations against the 
current measured topsoil thickness data was conducted to select the best 
relationship. All ECa data sets were kriged to a 5- by 5-m cell size with 
identical spatial extent. The ECa values from cells that contained sampling 
sites were used to develop the regression with measured topsoil thickness. 
A regression equation for each fi eld was selected based on minimal bias 
between the measured and estimated topsoil thickness, standard error for 
the regression coeffi cient (β), and RMSE. The bias was tested by evaluat-
ing the hypothesis of β = 1 in the regression. The validation results showed 

that the DUALEM-2S sensor used in shallow mode performed the best 
for Field 1, and the DUALEM-2S sensor used in shallow or deep mode 
performed equally well for Field 2. For consistency and comparison pur-
poses, we selected the DUALEM-2S sensor in shallow mode to estimate 
topsoil thickness for further analyses. The selected regression equations and 
the selection criteria are given in Table 1.

Statistical Analyses
The mean distances between any two sampling sites were 363 and 

244 m for Fields 1 and 2, respectively, and soil properties determined at 
these sampling sites were assumed spatially independent. Several statistical 
procedures were used in the data analyses. For each textural class, a two-sam-
ple t-test was performed between UL and water content at −33 kPa (θ−33), 
and then a one-sample t-test was used to test whether the measured PAW 
values were equal to the USDA-NRCS PAW values used in Eq. [1]. Both 
ECa and the reciprocal function, ECa

−1 (Sudduth et al., 2003; Sudduth and 
Kitchen, 2006) were used to regress against measured UL1.2, LL1.2, and the 
difference between the two (i.e., PAW1.2). These ECa values were the same 
as those used to validate the topsoil thickness. Normal errors were assumed 
for these simple regression models, and therefore model residuals were 
tested for normality. For the two-layer profi le approach, RMSE calculation 
and bias tests were performed for measured PAW1.2 vs. estimated PAW1.2 
(Eq. [1]). Furthermore, the estimated PAW1.2 (Eq. [1]) and the measured 
PAW1.2 were examined against a 1:1 reference relationship. All statistical 
procedures were conducted using SAS software (SAS Institute, 2005), and 
the signifi cance level for all statistical procedures was α = 0.05.

RESULTS AND DISCUSSION
Texture Distributions and Plant-Available Water 
by Texture

In Field 1, the measured topsoil thickness ranged from 11 to 
120 cm with an average of 34.8 cm (Table 1), and all topsoil hori-
zons but one were SIL texture. In Field 2, the measured topsoil 
thickness ranged from 0 to 120 cm with an average of 40.1 cm. 
Seven out of the 18 sample profi les had SICL texture for the topsoil 
horizon, and one profi le had no topsoil (i.e., SIC at the surface). 
The higher clay content in the surface horizons for Field 2 was 
an indication of more severe erosion having occurred in Field 2 
than in Field 1 and a possible result of tillage mixing of the subsoil 
into the shallow surface horizon. Furthermore, 12 SIL horizons in 
Field 2 were found in the subsoil (below 40 cm), underlying SIC 
and SICL textures, while all SIL horizons but one in Field 1 were 
surface horizons. The SICL horizons were more dispersed across 
the depth of the profi le in Field 2 than in Field 1.

Particle size distributions, UL, LL, calculated PAW, and θ−33 
for each textural class are given in Table 2. The two-sample t-tests 
indicated that the ULs for the SIL texture in both fi elds were sig-
nifi cantly higher than the corresponding θ−33. The rain event that 
occurred 2 d before sampling with the somewhat poorly drained 

Table 1. Mean measured topsoil thickness (TT), selected apparent bulk soil electrical conductivity (ECa) sensor, regression equa-
tion, and regression statistics for measured and ECa–estimated topsoil thickness.

Field
Mean 

measured TT
Sensor, mode Regression equation used†

Statistics of fi t (y = α + βx)‡

RMSE β SE for β R2 P > F (β = 1)

cm cm

Field 1 34.8 DUALEM-2S, shallow TT = −58.57 + 3913EC−1 11.5 0.77 0.12 0.71 0.07

Field 2 40.1 DUALEM-2S, shallow TT = −88.67 + 5807EC−1 12.3 0.95 0.09 0.89 0.60

† From Sudduth and Kitchen (2006).

‡ x is measured topsoil thickness, y is ECa–estimated topsoil thickness.
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subsurface was a possible reason for this result. The UL of SICL, 
SIC, and C textures were all lower than the θ−33 in Field 1, but 
were all the same as the θ−33 in Field 2. The UL being lower than 
θ−33 in Field 1 was an indication that, on average at the time of 
sampling, subsurface soils had not been fully recharged during the 
fallow period, a result of below-normal precipitation. The fact that 
our UL compared well with the historical neutron probe data col-
lected in Field 1, however, suggested that the observed UL values 
represented fi eld conditions normally encountered for this type of 
soil. A closer agreement between the UL and θ−33 may have been 
found had the fi eld been wet for a longer period of time to allow 
the subsurface to fully recharge. Between Field 1 and Field 2, PAW 
values for all texture classes except for the SIL were statistically the 
same. The PAW for the SIL was higher in Field 1 (0.250 m3 m−3) 
than in Field 2 (0. 219 m3 m−3), with a P value of 0.031 (data not 
shown). This difference stemmed from signifi cantly higher LL for 
the SIL in Field 2 (0.150 m3 m−3) than in Field 1 (0.130 m3 m−3, 
P value = 0.028, data not shown). The higher LL value for the SIL 
in Field 2 was a result of the SIL horizons distributed deeper in the 
sample profi les. These deeper SIL horizons had lower organic mat-
ter and higher clay content than the SIL horizons found at shallower 
depths, hence a slightly higher LL.

The PAW fraction values are also included in Table 2. These 
PAW fraction values were obtained by averaging the two values (a 
high value and a low value) given by Young et al. (2001) for a given 
texture. The NRCS PAW values matched well with the measured 
PAW for SIL in Field 2 and for SIC and C in both fi elds. The NRCS 
PAW value was lower than the measured PAW for the SIL in Field 1 
and higher on average for the SICL in both fi elds (Table 2).

Relationships between Apparent Electrical 
Conductivity and the Upper and Lower 
Limits of Plant-Available Water Capacity

Simple regression models using ECa
−1 yielded bet-

ter results with all variables (UL1.2, LL1.2, and PAW1.2) 
than models using ECa. Thus, the results using ECa

−1 
are presented and discussed here. The mean and standard 
deviation for the UL1.2, LL1.2, and PAW1.2 expressed in 
millimeters of water, as well as for ECa

−1, are given in 

Table 3. The regression coeffi cients of ECa
−1 were signifi cant 

for LL1.2 for both fi elds. The r2 values were 0.66 and 0.75 for 
Fields 1 and 2, respectively (Fig. 1).

Soil water content is one of the chief factors affecting ECa. 
Kachanoski et al. (1988) reported high correlations between volu-
metric water content measured over a 0.5-m soil depth and ECa 
measured over a series of soil depths ranging from 0.5 to 6 m. 
Good correlations remained between one-time measured ECa and 
water content measurements taken over time, provided that the 
spatial variability of water content was relatively temporally stable 
(Kachanoski et al., 1990), and that potential temporal correla-
tion among water content measurements was small enough not to 
impact the estimation equation (Reedy and Scanlon, 2003). The 
sample LL1.2 ranged from about 160 mm (~0.13 m3 m−3) to 340 
mm (~0.28 m3 m−3, Fig. 1), which was consistent with the water 
content ranges (<0.30 m3 m−3) where highly signifi cant relation-
ships were reported in the literature. Because the lower limit water 
content was obtained at a fi xed soil water pressure, however, the vari-
ation in LL1.2 was mainly caused by soil texture and horizonation, 
rather than by fi eld conditions such as structure and drainage.

From the relationships between ECa
−1 and topsoil thick-

ness and between ECa
−1 and LL1.2, a relationship between top-

soil thickness and LL1.2 could be expected. Correlation analysis 
showed signifi cant correlation coeffi cients between topsoil thick-
ness and LL1.2 (−0.92 and −0.93 for Fields 1 and 2, respectively; 
P < 0.0001). For a Mexico soil, the amount of water retained at 
−1500 kPa in an Ap horizon with a SIL texture (~0.12 m3 m−3) is 
normally only about one-half of the amount retained in a Bt hori-

Table 2. Particle size distributions, measured upper limit (UL), lower limit (LL), plant-available water (PAW), and water content 
at −33 kPa (θ−33) by textural class, and t-test results for the UL vs. θ−33 and for measured vs. NRCS PAW (numbers in paren-
theses, except for textural class, are standard deviations).

Textural
class (n)

Sand Silt Clay UL θ-33 UL vs. θ−33 LL
PAW 

(UL − LL)
NRCS 
PAW†

Measured vs  
NRCS PAW

————–%————— ——– m3 m−3—— P > |t| ————–m3 m−3———— P > |t|
Field 1

SIL (33) 6.7 (3.3) 73.6 (4.9) 19.8 (3.0) 0.380 (0.051) 0.358 (0.028) * 0.130 (0.036) 0.250 (0.053) 0.23 *

SICL (32) 2.7 (2.1) 63.6 (2.7) 33.7 (3.2) 0.373 (0.026) 0.415 (0.023) *** 0.252 (0.033) 0.122 (0.036) 0.19 ***

SIC (24) 1.7 (1.1) 48.5 (6.4) 49.9 (6.2) 0.420 (0.047) 0.464 (0.031) *** 0.300 (0.046) 0.120 (0.069) 0.12 NS

C (7) 2.9 (2.1) 38.6 (1.1) 60.1 (0.9) 0.454 (0.027) 0.488 (0.028) * 0.336 (0.024) 0.117 (0.041) 0.11 NS

Field 2

SIL (23) 7.1 (3.7) 70.8 (4.9) 22.1 (2.5) 0.369 (0.047) 0.317 (0.029) *** 0.150 (0.025) 0.219 (0.050) 0.23 NS

SICL (39) 6.9 (4.5) 59.9 (4.7) 33.2 (3.7) 0.367 (0.044) 0.366 (0.047) NS 0.243 (0.049) 0.125 (0.060) 0.19 ***

SIC (18) 2.7 (1.9) 50.6 (4.8) 46.7 (5.8) 0.412 (0.066) 0.419 (0.058) NS 0.293 (0.054) 0.118 (0.044) 0.12 NS
C (2) 1.2 (0.6) 37.1 (2.8) 61.8 (3.3) 0.443 (0.018) 0.503 (0.044) NS 0.332 (0.007) 0.111 (0.011) 0.11 NS

* Signifi cant at the 0.05 level; NS, not signifi cant.

*** Signifi cant at the 0.001 level.

† Values were taken from Young et al. (2001).

Table 3. Basic statistics for measured upper limit (UL1.2) and lower lim-
it (LL1.2), and calculated plant-available water capacity of a 1.2-m 
soil profi le (PAW1.2 = UL1.2 − LL1.2), along with apparent bulk soil 
electrical conductivity (ECa) and ECa

−1 statistics.

Field Statistic UL1.2 LL1.2 PAW1.2 ECa ECa
−1

—————- mm—————– mS m−1 (mS m−1)−1

Field 1 Mean 469 287 181 42.5 0.0244

SD 29 36 53 8.4 0.0050

Field 2 Mean 454 279 175 48.7 0.0220
SD 23 57 58 12.8 0.0060
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zon with a SIC texture (~0.24 m3 m−3; Chung, 1989). Thus, the 
thicker the topsoil, the more water can be released before the lower 
limit is reached. This result explained the signifi cant relationship 
between ECa

−1 and LL1.2 shown in Fig. 1.
There was a small signifi cant increase in the UL1.2 with 

increasing ECa
−1 for Field 1 (r2 = 0.24), but no relationship 

was found for Field 2 (Fig. 1). Kachanoski et al. (1988) showed 
that the curvilinear relationship between ECa and water con-
tent, both measured over a 0.5-m soil depth, leveled off at higher 
water content (>0.30 m3 m−3), and the slope of the fi tted curve 
changed to negative (which would be positive with ECa−1) 

when water content increased above 0.36 m3 m−3. This fi nding 
is supported by our result that ECa

−1 was insensitive to UL1.2, 
which ranged from about 400 mm (~0.33 m3 m−3) to 510 mm 
(~0.43 m3 m−3) across the two fi elds.

Having examined how UL1.2 and LL1.2 were related to 
ECa

−1, the relationship between the PAW1.2 and ECa
−1 could be 

readily examined (Fig. 2). The regression models in Fig. 2 yielded 
RMSE values of 30 and 20 mm for Fields 1 and 2, respectively. 
With the two fi elds combined, the r2 value was 0.76 and RMSE 
was 27 mm. These results indicated that soil ECa

−1 can be directly 
used to estimate fi eld-variable profi le PAW with certain confi -
dence intervals once a relationship between ECa and profi le PAW 
to a chosen soil depth is calibrated.

Estimating Plant-Available Water Capacity with a 
Two-Layer Soil Profi le

As presented in Table 1, there was an average RMSE of 
12.0 cm for measured vs. ECa–estimated topsoil thickness for 
the two fi elds. To give an insight into how these topsoil thick-
ness errors contribute to estimating PAW1.2 with the two-layer 
approach (Eq. [1]), we applied Eq. [1] to both the measured topsoil 
thickness and the ECa–estimated topsoil thickness and obtained 
two PAW1.2 estimates. Then RMSE values were calculated for the 
measured PAW1.2 vs. each of the two PAW1.2 estimates. Using 
the ECa–estimated topsoil thickness, the RMSE values were 14 
and 16 mm as shown in Table 4, which were 7.6 and 8.6% of the 

mean measured PAW1.2 for Fields 1 and 
2, respectively. Using the measured topsoil 
thickness, the respective error percentages 
were 7.0% (13 mm) and 6.4% (12 mm) 
of the mean measured PAW1.2 (data not 
shown). The increase in error by using 
ECa–estimated topsoil thickness (0.6 and 
2.2% for Fields 1 and 2, respectively) was 
considered relatively minor, confi rming 
our assumption in Eq. [1] that ECa could 
be used to estimate topsoil thickness.

Figure 3 plots the regression rela-
tionship between the measured PAW1.2 

Fig. 1. Plots of the reciprocal of bulk soil apparent electrical 
conductivity (ECa

−1) vs. the upper limit (UL1.2) and lower 
limit (LL1.2) of plant-available water for a 1.2-m soil profi le, 
along with regression equations fi t to the data and r2 val-
ues. The ECa

−1 values were obtained from the kriged 5- by 
5-m cell containing each sampling site. * Signifi cant at the 
0.05 level. *** Signifi cant at the 0.001 level.

Fig. 2. Plot of the reciprocal of bulk soil apparent electrical 
conductivity (ECa

−1) vs. measured plant-available water for 
a 1.2-m soil profi le (PAW1.2), along with regression equa-
tions fi t to the data, r2 values, and RMSEs. The PAW1.2 was 
calculated as the difference between the profi le upper limit 
(UL1.2) and lower limit (LL1.2). * Signifi cant at the 0.05 
level. *** Signifi cant at the 0.001 level.

Table 4. Regression statistics for measured (upper limit [UL1.2] − lower limit [LL1.2]) vs. 
two-layer-estimated (Eq. [1]) plant-available water for a 1.2-m soil profi le (PAW1.2).

Statistic Field 1 (n = 19) Field 2 (n = 18) Both fi elds (n = 37)

Measured mean PAW1.2 (SD), mm 181 (53) 175 (58) 178 (55)
Estimated mean PAW1.2† (SD), mm 185 (23) 187 (38) 186 (31)

Regression equation (y = α + βx‡) 122 + 0.35x 81 + 0.61x 100 + 0.48x

Regression r2 0.66 0.83 0.73

SE for β 0.060 0.068 0.050
RMSE§, mm 14 16 16

† Obtained by Eq. [1], where topsoil thickness is estimated by apparent bulk soil electrical conductivity.

‡ x is the measured PAW1.2, y is two-layer-estimated PAW1.2.

§ RMSE is the root mean square error of y against x.
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and the two-layer-estimated PAW1.2, along with a 1:1 line. The 
regression parameters and test statistics are given in Table 4. 
The estimated PAW1.2 ranged from 146 to 249 mm for Field 
1 and from 148 to 274 mm for Field 2, smaller ranges than 
those for the measured values (Table 4). The regression slopes 
signifi cantly deviated from the 1:1 line. The estimation pro-
cedure tended to overestimate for lower PAW1.2 values and 
underestimate for higher values. The data point of Field 1 indi-
cated by an arrow in Fig. 3 had the largest residual error of 
102 mm because there was a 25-cm underestimation in topsoil 
thickness at this sampling site located in a depositional area 
of the fi eld. Thus, the estimated PAW1.2 was greatly reduced. 
Deposited topsoil often has higher clay content than in situ 
topsoil, and this higher clay content detected by the EC sensor 
may be partially responsible for underestimating topsoil depth. 
The same reason also applied to the Field 2 data point indi-
cated by an arrow, where there was a 24-cm underestimation 
in topsoil thickness. The overestimation at the lower end of the 
regression line, however, was not attributed to topsoil thickness 
errors because these errors did not correlate with the PAW1.2 
residual errors (graph not shown). Instead, the overestimation 
of PAW1.2 occurred regardless of whether the residual errors 
for topsoil thickness were positive or negative. This trend was 
probably because NRCS PAW values smoothed the variation 
observed in individual horizons, especially for horizons that 
were potentially still less than fi eld capacity at sampling. Our 
soil-sampling fi eld notes confi rmed that the greatest overesti-
mation (data points circled at the lower end of the regression 
line in Fig. 3) occurred at the most eroded sites, where parts of 
the soil profi le may not have reached fi eld capacity.

Overall, the hypothetical two-layered soil body in conjunc-
tion with NRCS PAW values and ECa–estimated topsoil thick-
ness yielded reasonable estimates for the PAWc over a 1.2-m 
profi le. One key factor in the success of this simplifi ed estimat-
ing procedure was that the SIC and SICL textures, dominant 
textures beneath the topsoil, had similar measured PAW val-
ues. Thus, the presence of SICL would not bias the estima-
tion even though this texture was not included in the model 
(Eq. [1]). The procedure tended to overestimate PAW for soil 
profi les with higher clay content in one or more horizons (usu-
ally eroded areas). With reduced hydraulic conductivity near 
the soil surface, these profi les may take much more time to 
recharge to fi eld capacity than what is normally assumed.

CONCLUSIONS
Our ultimate objective was to quantitatively determine 

PAWc at a fi eld scale using soil ECa information, which can be 
acquired relatively quickly and inexpensively at high spatial reso-
lutions. Two approaches were examined in this study. The simple 
regression model showed a signifi cant relationship between ECa 
and profi le PAWc. The r2 values were 0.67 and 0.87 and the 
RMSE values were 30 and 20 mm for Fields 1 and 2, respec-
tively. These results were derived from the signifi cant relation-
ship of ECa to the lower limit of the profi le PAWc, which is 
highly correlated with topsoil thickness.

The second approach further simplifi ed PAWc estimation by 
hypothesizing a two-layer soil profi le comprised of a SIL topsoil 
layer and a SIC subsurface layer, whose boundary can be conve-
niently estimated by ECa. The RMSE between the measured and 

two-layer-estimated PAW1.2 was 16 mm for the two fi elds com-
bined. The potential of this approach is that once a good calibra-
tion is established between topsoil thickness and ECa, the map 
of ECa can be translated into a PAWc map. In this case, the chief 
error source for this method came from sample sites that did not 
reach fi eld capacity. The NRCS PAW values are given as an aver-
age PAW fraction value for a given texture class and do not take 
into account variability caused by fi eld factors such as recharge 
and drainage conditions, landscape position, and organic matter 
content. This, in turn, presents a potential problem in applying 
this approach for a claypan soil landscape, because soils at certain 
locations in a claypan fi eld may practically never reach fi eld capac-
ity throughout the whole soil profi le even in normal and above-
normal precipitation years, due to slow recharge. Another draw-
back of this approach, due to its deterministic nature, involves the 
diffi culty in assessing estimation errors.

In all, for similar claypan soil types, both approaches can 
be used as quick and cost-effi cient methods to quantify within 
fi eld profi le PAWc with reasonable accuracy. Being aware of their 
advantages and disadvantages, the resulting PAWc maps can be 
useful for site-specifi c decision making with regard to soil and 
water management.
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