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Abstract 

During the development of precision agriculture technology, prior existence of crop simulation 
models prompted their application to modeling spatial variation in yield. On the face of it, extending 
a fairly mature 1-D model of crop growth and yield appeared to be a matter of developing spatial 
suites of input parameters and running amodel for each set. For many models, extensive literature 
had already reported independent tests in multiple combinations of variety, soils and climate which 
was generally considered substantial validation of the performance of the models. However, most 
prior literature tests had as objectives, the evaluation of model performance in simulating mean 
yields across multiple plots in yield trials, which represented the majority of yield data before yield 
monitors. Precision agriculture requires not just simulation of the mean, but also a simulation of 
spatial variation. No real consensus has emerged regarding exactly how to test model performance 
or of what performance constitutes success. In some cases, success simulating inter-annual 
variability has been asserted as proof of simulating spatial variability. Further, common measures 
of goodness of fit suffer from dependence on the range of variation in the independent variable. 
When multiple sources of variation, for example inter-annual and spatial, are combined in a test, 
commonly used performance measures may fail to support the hypotheses represented in a paper's 
objectives. We outline several issues relevant to the topic, specifically (1) fundamental differences 
between simulating means and simulating variation and how these results can be evaluated, (2) the 
need to link performance measures to stated objectives, (3) an example of performance, isolating 
sources of variation and model performance toward simulating each source, and (4) a discussion 
of potentially preferable performance measures. By synthesis and example, we provide guidelines 
and structure for future precision agriculture modeling efforts. 
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Introduction 

The information-intensive nature of precision agriculture practically invites the use of process- 
level computer simulation models of crop growth and yield. Used retrospectively, they can help 
build understanding, and used prospectively, they can predict effects of precision agriculture 
recommendations. However, for reasons described below, precision agriculture poses several 
challenges to both models and modelers. These challenges are not generally recognized, requiring 
some examination of exactly what we need models to achieve. Further, little consensus has developed 
about our expectations for models, requiring some discussion of what constitutes success. Finally, 
the special circumstances of precision agriculture must be considered during model evaluation. 
Therefore, we examine these three issues, discussing philosophy, theory, and practical issues 
surrounding modeling for precision agriculture, and illustrate these issues with representative 
datasets from our experience. 
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What is 'modeling for precision agriculture'? 

Ironically, although the answer to this question defines almost everything discussed in this paper, 
the question itself has gone largely unasked. A recent book on agricultural systems models (Ahuja 
et al., 2002b) includes examples spanning several different approaches. Kiniry et al. (2002) discuss 
models applicable to three spatial scales: individual plants, whole fields, and whole drainage basins. 
Models corresponding to the first of those scales have been parameterized with site-specific inputs, 
and multiple representations have been runindependently to simulate site-specific crop growth and 
yield. In one such example, Kersebaum et al. (2002) applied a one-dimensional model at multiple 
points within two fields. They further illustrated the combination of that type of model results with 
autoregressive state-space analysis. Sadler et al. (2002) discussed conventional approaches with 
one-dimensional models, plus driving the models with remote sensing inputs, and performing 
objective parameterization in an inverse modeling approach. Ahuja et al. (2002a) briefly discussed 
topographic analysis, scaling, and modeling to assess both temporal and spatial variability across 
landscapes. In separate work, McBratney et al. (1997) described several geostatistics approaches 
to quantifying variability of measured yield in spatial and temporal dimensions, and in their 
combination. There are many unanswered questions about modeling for precision agriculture and 
a number of useful approaches. In this paper, we restrict our discussion to the spatial application 
of models to obtain estimates of crop yield that vary spatially and temporally. To do this, we must 
examine assumptions made in models that are applied to precision agriculture. 
It would appear that researchers have operated under the modeling paradigms developed concurrent 
with model development, either concluding that no change is needed or not recognizing differences 
that, although subtle, may have profound implications on use of models and interpretation of their 
results. Ultimately, modeling requirements are defined by the objectives of modeling experiments, 
and under the needs of precision agriculture, these objectives are fundamentally different than for 
much of prior modeling research. In short, most prior modeling objectives required simulating yield 
for a homogenous area. When replications across a field were used for parameterization, models 
functioned at the field or larger scale. On the other hand, precision agriculture requires simulation 
of point yields at many places within a field. Thus, not only is there a requirement to accurately 
simulate the field mean, there is also a requirement to accurately simulate the variation in the 
field (see Sadler and Russell, 1997 for a broad description of this topic). This is a fundamentally 
different requirement than simulating the mean, but this distinction appears to not be recognized 
in many research articles. Maximum performance requires point-wise accuracy, meaning the highs 
and lows must be accurately matched. 
Perversely, while we add this need to simulate spatial variation, we simultaneously remove three 
of the four types of variation in model inputs. Models generally simulate crop growth and yield in 
response to weather, crop, management, and soil inputs. In the precision agriculture context, there 
is usually only one weather station and one cultivar, and often only one management (assuming 
uniform culture, which is the case in many published model tests). Thus, the source of variation 
in model outputs is by definition restricted to variation in the soil inputs. Unfortunately, spatial 
soil inputs are particularly difficult to obtain, which has prompted a number of inverse modeling 
studies to determine best-fit parameters (see Ferreyra et al. 2006). Finally, processes involving 
physical, chemical, and biological variation in real soils are not always fully represented in models 
of crop growth and yield. These latter two issues are discussed both broadly and with examples 
by Sadler et al. (2002). 
Bearing these issues in mind, we propose to identify common types of precision agriculture research 
objectives, and establish the type of modeling objectives that are needed to meet the research 
objectives. Sadler et al. (1998, 2000) discussed modeling for precision agriculture as needing 
to be capable of simulating the effect of soil parameters known to cause variation in the subject 



context, and of candidates for variable-rate management. These requirements must be addressed 
with model structure. 
Given that precision agriculture involves explicitly managing within-field variation, it would appear 
that almost all relevant research objectives involve estimating spatial crop growth and yield. For 
some objectives, the relevant area for which yield is simulated could be a management zone or a 
soil map unit of reasonably homogenous soil characteristics. Simulating yield for these conditions 
is a natural extension of prior modeling research, and the goal may be considered to be the map 
unit or management zone mean. For many other objectives, however, the requirement would 
appear to be the simulation of yield at all points in the field. Examples of such studies include 
spatial recommendations for on-the-go management, or feasibility studies to examine whether there 
would be economic benefit to precision agricultural management. For any case, if the interpretation 
depends on zone or point-wise accuracy in simulating yield, then the conclusions of the paper are 
only as good as the accuracy of the model. 

How good is good enough? 

General accuracy issues regarding modeling for precision agriculture were discussed by Sadler et 
al. (2000), who pointed out that accuracy requirements are as varied as model research objectives. 
Thus, there can be no definitive statement of required accuracy. Ideally, the model result would 
exactly match the corresponding measurement at all points in the field. However, sub-ideal results 
can provide sufficient information to meet some research objectives. For instance, qualitative 
accuracy, in which the direction of the effect of some management change is simulated correctly, 
can indicate what management might be recommended in some cases. If the simulated high and 
low yields properly indicate the areas of the field where the high and low yields occur, management 
zones could be delineated from the information. Target yields for zones or map units may require 
only the accuracy of the mean. 
However, any research objective that depends on the extremes or range of yields expected would 
suffer if these were not quantitatively accurate. Any objective depending on the sensitivity of the 
model, such as optimizing variable-rate management, would need to have accuracy of both the mean 
and of the derivative with respect to the managed input (Sadler et al., 2000). Risk analysis probably 
puts even more emphasis on the model's ability to simulate well the tails of the distributions. These 
latter imply the variation is also simulated accurately. The need for unbiased yield estimates, or 
accuracy of simulating the mean, is generally recognized. The need for accurate simulation of the 
variation is not. 

How can we tell? 

Bearing these considerations in mind, how can models be tested and their performance be confirmed? 
Model tests fiom pre-precision agriculture literature typically included regression or correlation of 
simulated against observed values (or observed against simulated -more on that later), calculations 
of root mean square error, mean error (or bias), and in some cases, model efficiency as defined by 
Nash and Sutcliffe (1970). Most model tests in precision agriculture have used regression as the 
primary test. Further, there has been essentially no discussion of measurement error in published 
tests. This issue must eventually be considered, but it is beyond the scope of this work. 

Simple linear regression 
Simple linear regression of simulated yield as a function of observed yield is pre-programmed in 
most application software and therefore is probably most widely used. The interpretation of the 
coefficient of determination (9)as the fiaction of variation in the measurements being explained 
by the model is intuitive as a performance measure. There is some difference of opinion whether to 
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regress simulated against observed or the reverse, but ? from both is numerically equivalent, and 
perfect agreement converges to the same coefficients, with intercept of zero and slope of one. 
Researchers using the regression approach generally conclude that a model produces useful 
results if the simulated output represents -70-80% or more of the variation in the observed result. 
Although there has been less discussion of slope and intercept, it is not recommended to rely solely, 
or even primarily, on r2 without due consideration being given to slope and intercept (Krause et 
al.,2005). 

Root mean square error 
Many researchers have reported the root mean square error (RMSE) as a performance measure. It 
has useful characteristics in that it approaches zero with perfect performance and penalizes large 
error with the commonly used square function. 

(1) 

Where 0 = observed value, S= simulated value (formally, 'predicted' is not rigorous because it 
does not exist concurrently with observed values), and n is the number of values. 

Model efficiency 
The hydrologic disciplines often employ a model efficiency developed for river forecasting by 

Nash and Sutcliffe (1970). 


Where 0 represents the mean observed value. 

The ENSstatistic approaches 1 for perfect model performance, and a value of 0 indicates that the 

mean value is as good a predictor asthe model (Krause et al. 2005). In the hydrologic interpretation, 

ENSof 0.5 or more is generally considered sufficient to begin interpreting the model results as 

representative. However, that threshold is more than likely specific to the hydrologic discipline and 

would need to be determined for other modeling disciplines through experience. 


Additional challenges with multiple-year data 
Any of the above techniques should be safe to apply to data from tests in which single sources of 
variation (i.e. temporal or spatial in precision agriculture) exist. However, depending on the relative 
contribution of the two sources, simple application of any of the above techniques may cause 
misinterpretation of the statistical results. In many cases, inter-annual variation of the mean field 
yield greatly exceeds within-field variation of point values during the year. Under these conditions, 
it can be shown that models capable of simulating field means but demonstrably incapable of 
simulating spatial variation can still producevalues of?and E~~high enough to suggest performance 
adequate for general use. 
As the foundation for much of the following depends upon the reader agreeing with the thesis that 
temporal and spatial variation must be considered separately, we offer two examples as proof. There 
are two cases in which a model explains none of the spatial variation in yield: one in which the 
model returns a constant, and one in which the model returns a number that is random relative to the 
observed value. These cases are easily constructed and demonstrated. We started with observations 
from a 7-yr record of soil-map-unit-mean yield from Florence, SC, USA (Sadler et al., 2000). We 
then created two datasets for which performance of spatial yield simulation was zero, but temporal 
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yield simulation was perfect or nearly so. For the constant case, we set the 'simulated' yield to equal 
the observed annual mean (Figure 1).For the random case, we generated a pseudo-random number 
using the random normal function in SAS (SAS Institute, 2006) with mean equal to the observed 
annual mean and coefficient of variation (CV) of 10% (Figure 2). Thus, in both cases, the temporal 

0 2000 4000 6000 8000 I0000 
Measured Yield, kglha 

Figure I. Synthesized data t o  illustrate zero spatial performance with perfect temporal 
performance. Simulated output was the annual mean of the measured values (measured data 
from Sadler et a/.,2000). 

0 2000 4000 8000 8000 I0000 
Measured Yield, kglha 

Figure 2. Synthesized data to  illustrate zero spatial performance with perfect temporal 
performance. Simulated output was random values about the annual mean of the measured 
values with coefficient of variation (CV) of 10% (Sadler et a/.,2000). 
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variation was simulated very well by design, but there was no spatial simulation accuracy at all. As 
seen in the two figures, the ? values obtained were 0.81 and 0.75. However, by definition, these 
two cases have no value at all except in estimating the mean yield for the year. It is very difficult 
to argue that either case would contribute information useful to precision agriculture. 
While it is immediately apparent that neither of the test cases just discussed were capable of 
simulating spatial yield, such is not usually the case with real data. In some cases, the model appears 
capable of simulating both temporal and spatial yield variation relatively well. For this situation, 
a method is needed to objectively analyze the data. We propose a method to separate the temporal 
and spatial components of variation, somewhat analogous to Kobayashi and Salarn (2000), who 
separated mean squared deviation into its components. Our method uses linear regression to test 
temporal performance by comparing annual means of simulated and observed values, and then uses 
linear regression to test spatial performance by comparing the residuals fiom those means for the 
entire dataset. The residuals are computed using the following equations for each data value. 

where the subscripts Y indicate the annual mean for observed and simulated values. 
This procedure is illustrated using soybean yield data from Wang et al. (2003). For the purposes 
of this illustration only, their calibration and validation datasets were combined (and one apparent 
outlier that they identified was deleted), providing 13 sites in 3 years overall. The simple linear 
regression of S on 0 (Figure 3) indicates remarkably good fit to the 1 :1 line, with S=-228+1.09*0, 
?=O.98, ENs=0.96, RMSE=II6, and bim=3.69.These measures all compare quite favorably with 
the best results these authors have seen. However, as shown in Figure 4, regression of the annual 
means indicates S=-449+1.19*0, ?=I. 00, suggesting that there is a slight underestimation of low 
yields in one year. When the regression was performed on the residuals from the means (Figure 
5), the relationship was R9=0.898*0, with ?=0.96 (the intercept is zero by definition, but the 
regression was not constrruned). This result, unanticipated from prior analyses of the combined data, 
illustrates additional interpretation that may be possible once the temporal and spatial performances 

0 500 1000 1500 2000 2500 3000 3500 
Measured Yield, kglha 

Figure 3. Simulated and observed soybean yields for three years from Wang et a/. (2003). Their 
data point B3, which they identified as an outlier, was deleted. The data shown are the calibration 
and validation data combined. 
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Figure 4. Simulated and observed annual mean soybean yields for three years from Wang et ol. 
(2003). 
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Figure 5. Simulated and observed residuals from annual mean soybean yields for three years 
from Wang et ol. (2003). 

are considered separately. Here, the slope less than unity seen in Figure 5 indicates a slight but 
systematic underestimation of the measured variation in yield. This was not apparent from the 
commonly used regression shown in Figure 3. 

Conclusions 

Tests of models should be chosen to match research objectives, in particular considering multiple 
sources of variation in the test data set. In precision agriculture, one would expect the primary 
goal to be the ability of a model to simulate spatial variation. A test combining year-to-year and 
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spatial variation de'monstrated that good year-to-year performance masks spatial non-performance 
for typical precision agriculture data. A method to separate spatial from temporal variation and 
to test the separate performance was provided, and by example, the added value of separating the 
sources was shown. 
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