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Site-specific management (SSM, also known as precision farming, precision
agriculture, prescription farming, etc.) is a management strategy that seeks to

. address within-field variability and to optimize inputs such as pesticides and
fertilizers on a point-by-point basis within a field. By reducing over-application and
under-application of nutrients and pesticides, this strategy has the potential to
improve profitabilitYfor the producer and also to reduce the threat of groundwater
or surface water contamination tTom agrichemicals. SSM is being adopted by
innovative producers across the country. Agricultural equipment manufacturers,
farm input suppliers, and a host of other businesses are working along with public-
sector research and education personnel to provide the necessary tools for farmers
to implement this management strategy.

With the exception of grain yield, most data collection for commercially
implemented SSM is done through laboratory analysis of collected samples. There
is a tremendous need and opportunity for development of sensing technologies that
will allow automated collection of soil, crop, and pest data. Sensors will allow the
collection of data on a much finer spatial resolution than is currently feasible with
manual and/or laboratory methods. These intensely sensed data should more
accurately characterize within-field variability. Important soil variables to be sensed
could include soil organic matter (important for herbicide and fertilizer application),
nutrient level (for fertilizer application), pH (for liming rate and herbicide
application), moisture (for seeding depth), and topsoil depth (for seeding and
fertilizer application rates). Crop-related variables that could be sensed for input
manageme,nt include weed pressure and identification (for intermittent herbicide
application), crop condition (for within-season fertilizer application), plant
population, and crop yield. .

Sensor technology currently lags behind the other enabling technologies
necessary for SSM - positioning by the Global Positioning System (GPS), spatial
mapping and analysis with Geographic Information Systems (GIS), and variable-rate
control systems for fertilizer, herbicides, and seeding.

Development of sensors and technology for precise application of nutrients
and pesticides was identified as one of the 1995 National Agricultural Engineering
Research Priorities by ASAE, the society for engineering in agricultural, food, and
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biological systems. In 1993, the USDA National Agricultural Library and the
Equipment Manufacturers Institute (EMI, an association of agricultural equipment
manufacturers) co-sponsored a technology transfer project to identify sensor needs
of the industry. Two of the top six priorities were sensors for soil property data and
sensors to continuously measure crop yield.

Research and development efforts related to sensors for SSM are ongoing
in a number of universities, government agencies and companies, both in the USA
and abroad. This chapter reviews sensor developments and supporting scientific
investigations ftom these organizations based upon the current literature and, in the
case of industry, announced products. In addition to these developments, there are
certainly a number of other continuing efforts which have not yet been reported.
Also, readily available sensors that are only peripherally related to SSM, such as
ground speed radar sensors, hydraulic system pressure sensors, or shaft rotational
speed sensors are not discussed. Information on those types of devices is readily
available from such references as Doebelin (1990) and Henry et al. (1991). An
attempt has been made to give a comprehensive overview of those sensors and
technologies that are applicable to measurement of soil-related and plant-related
parameters important for SSM. .

weed control increases as soil organic matter content increases. Organic matter
variations as high as 2:1 were seen within an 80-m transect in a flat, apparently
uniform field in Central Illinois(Sudduth & Hummel, 1993b);higher variations
mightbe expectedin areaswithmorevariabletopography or over longer distances.
With this amount of variability.significantopportunity exists for cost savings and
input optimizationof soil-appliedherbicidesbased on soil organic matter (SOM)
content. Qiu et al. (1994) showed that up to one-halfof preemergenceherbicides
appliedin a typicalKentuckycom (ZeamaysL.) fieldcouldbe conservedusing site-
specificapplicationbased on variationsin soil organic matter, texture, and weed
competition. Soil organic matter content also affectsN fertilizerneeds. Many N
recommendationalgorithmsallow a credit for the N-supplyingpower of the soil,
which increaseswith increasingorganicmatter content.

The general observation that soils with greater organic matter contents
appeardarkerformed the basisof the concept that electro-opticalsensing of SOM
might be feasible(Alexander, 1969). Researchers have investigateda number of
approaches to automating this general concept, with varyingdegrees of success.
Problems have occurred because soil color and/or reflectance are functions of
properties such as moisture, texture, mineralogy,and parent material, as well as
SOM.

Soil Organic Matter

Optical estimation of soil organic matter has been accomplished with color
data and with wide-band and narrow-band spectral reflectance data. Soil color

properties correlated with SOM have included the Munsell coordinates of hue,
value, and chroma (Steinhardt & Franzmeier, 1979), as well as a number of
Commission Intemationale de I'Eclairage (CIE) color space coordinates (page,

1974). In general, color has been a good estimator of SOM only when limits were
imposed on the variability of other soil parameters that affect soil reflectance. A
variety of data types and calibration methods have been used to correlate percent
reflectance with SOM (Sudduth et aI., 1991). The best results with visible
reflectance data have been obtained with red light (Vinogradov, 1981). while the

most predictive near inftared (NIR) wavelengths have ranged ftom 1700 om to 2600
nm (Morra et aI., 1991; Henderson et aI., 1992).

Several researchers have developed optical SOM sensors to be used as a

control input for variable rate herbicide application. These sensors have ranged from
simple, single-wavelength devices to dedicated spectrophotometers capable of
acquiring reflectance data at a number of wavelengths. Krishnan et al. (1980)
correlated multiple-band reflectance characteristics in the 400 to 2400 nm range and
SOM for ten Illinois soils at four moisture levels. Better correlations were obtained

with visible range data than with NlR data. A first derivative model using optical
density data yielded a coefficient of determination (r) of 0.85 with the calibration
data set. Pitts et al. (1986) could not obtain satisfactory correlations when using this
model with an expanded set of30 Illinois soils ranging from 0.77 to 5.01% SOM.
However, they were able to successfully predict a range of SOM for each of the 30
soils using an exclusion algorithm and polychromatic (white), green, and red
reflectance data. The width of the prediction range for each soil was between 1 and

. 3% SOM,withanaveragewidthof 1.4%SOM.
Womer (1989) developed a portable spectrophotometer suitable for'

collection of multiple-wavelengthvisiblelNIRreflectance data in the laboratory.

SOIL PROPERTY SENSING

Measurement of the soil properties that affect plant growth is a basic task in
SSM. Although many soil properties (such as fertility levels) can currently be
quantified by more traditional methods, widespread adoption of SSM will depend
on automation to improve the efficiency of the soil property analysis process. The
spatial and temporal intensity at which each property must be measured is a function
of its variability. Some parameters, such as soil N03-N content and soil moisture
content, can change rapidly (both spatially and temporally) and must be measured
in real-time or near real-time to be useful for input control. Other parameters, such
as organic matter content and topsoil depth will vary over a much longer time
period, and can be measured off-line on a multi-year frequency. Likewise, spatial
measurement intensity can be related to the spatial variation in the property being
measured. Unfortunately, the necessary sampling intensity can only be determined
after sampling on a fine mesh to determine the spatial variability, }Vhichis cost
prohibitive without automated sensors.

There are two sources of error in soil testing - analysis error due to sub-
sampling and analytical determination, and sampling error due to point-to-point
variation in soils. With traditional soil testing, analysis error is relatively low;
however, sampling error can be substantial since cost limits the sampling intensity.
Real-time sensors can provide a sampling intensity several orders of magnitude
greater than traditional methods. Therefore, a reat-time soil sensor can tolerate much
higher analysis errors while providing greater overall accuracy in mapping soil
variability.

With many soil-applied herbicides, the application rate required for effective
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Smith (1991) modified this spectrophotometer for improved performance and
reliability, and used it to collect reflectance data on the same set of30 Illinois soils

used by other researchers (pitts et aI., 1986; Sudduth & Hummel, 1993b). Analysis
of combined field capacity and wilting point moisture level data by stepwise multiple
linear regression yielded an r of 0.61 and a standard error of prediction (SEP) of
0.7!)o/oSOM.

Griffis (1985) developed and tested a SOM sensor consisting of an
incandescent source and silicon phototransistor mounted in a light-proof housing.
An r of 0.75 was obtained in laboratory tests with a set of 18 air-dry Arkansas soils
ranging from 0.33 to 3.41% SOM. Kocher and Griffis (1989) reported on an
elevating chain and horizontal belt system that was used to convey soil past the
sensor developed by Griffis (1985). In laboratory tests with sieved, air-dry soil, the
conveying mechanism-sensor combination was successful in locating a step change
in soil type. .

Gunsaulis et al. (1991) studied the effect of soil surface structure on
reflectance from a red (660 om) light-emitting diode (LED) source. Surface
preparation was by sieving the air-dry soil and then scraping or rolling the surface
before obtaining reflectance measurements. Two sensor geometries were tested, one
tl1at measured only diffuse reflectance and one that measured both diffuse and
specular reflectance components. The 20 Arkansas soils used ranged from 0.47 to
2.1% SOM. The best results (r = 0.61) were obtained with absorbance data from

the diffuse-specular sensor, the largest sieve size (3.66 mm) and a scraped soil sur-
face. Attempts to minimize surface structure effects by passing the soil through small
sieves and rolling the surface smooth resulted in weaker (r = 0.40) correlations with
SOM. Improved results (r = 0.73) were obtained with multiple linear regression on
data obtained from both sensors.

Fernandez et aI. (1988) correlated Munsell color with SOM for a given soil
catena, which is a sequence of soils similar in terms of age, parent material, and
climatic Conditions,but having different characteristics due to variation in relief and
drainage. They hypothesized that the relationship between color and SOM would
be closer within a catena than those previously reported for wider geographic areas.
Samples collected from three soil series in each of two catenas yielded strong
correlations between SOM and the Munsell value parameter (moist soil r = 0.92,
dry soil r = 0.94). Different calibrations were required at the two moisture levels,
and the calibrations developed were applicable only within the catenas studied,
containing only silt loam and silty clay loam soils.

Shonk et al. (1991) built upon the work of Fernandez et al. (1988) and
developed a real-time SOM sensor intended to be recalibrated for each new soil
catena. The sensor consisted of compact transmitter and receiver modules that

utilized light reflectance to measure SOM. Light emitting diodes (LEDs) were
arranged in an array around a photodiode to focus an intense beam of light on the
soil surface directly below the photo diode. The position of the LEDs assured equal
illumination of the sensed surface by each diode, minimizing specular, or surface,
reflectance. The field of view of the photodiode was constrained to the most
intensely illuminated area of the soil surface and sensor height was 25 mm above the
soil surface. Laboratory tests using red (660 nm) LEDs as the light source on soil
samples collected from five representative Midwestern U.S. fields yielded strong

correlations (r =0.80 to 0.98) for soils obtained within a single catena and prepared
to a single moisture content. Coefficient of determination values were greater for
moist soils than air-dry soils. A linear relationship was found between light
reflectance and SOM for two catenas, both having fine and medium textured soils.
For field operation, the sensor was mounted to a tractor tool bar and operated below
the soil surface to minimize the effect of soil moisture, soil surface roughness, plant
cover, and crop residues on the sensor output. Field tests showed a curvilinear
relationship between sensor output and SOM (r = 0.84 to 0.95), with new
calibrations developed for changes in travel speed or sensing depth (Shonk: et aI.,
1991).

The sensor developed by Shonk et aI. (1991) was licensed for commercial
development and used to control the rate of a granular herbicide formulation applied
by a pneumatic metering system (McGrath et aI., 1990). The probe was mounted to
the front ofa custom applicator and operated at a depth of 10 cm and speeds of up
to 19 km hr-I. Soil samples were collected from each different soil catena to develop
a specific sensor calibration curve. McGrath et al. (1990) noted that moisture and
surface preparation significantly affected sensor output, and stated that calibration
should be carried out under conditions similar to those encountered at the time of

chemical application. The variable rate application system satisfactorily applied
herbicides in a number of field tests, and weed control was reported as excellent in
all cases.

Sudduth and Hummel (1991) conducted laboratory tests using a
representative set of30 Illinois mineral soils and concluded that NIR data analyzed
by partial least squares regression (PLSR) held the most promise for prediction of
SOM. PLSR, a latent variable regression method, was used to reduce the set of
collinear independent variables (reflectances) to a smaller set of orthogonal
components which represented most of the variability in the original data and
contained a reduced amount of random measurement noise (Martens & Naes, 1987).
The analysis technique was evidently able to minimize the effect of moisture,
resulting in improved SOM prediction as compared with single-wavelength sensing.
Excellent correlation (r = 0.92, SEP = 0.34 % SOM) was obtained when the NIR
data were smoothed to a 60-om data point spacing and the wavelength range was
reduced to 1720 to 2380 om, for a total of 12 reflectance points used (Sudduth &
Hummel, 1991).

A rugged, portable NIR spectrophotometer was developed to implement this
prediction method and laboratory and field tests were completed (Sudduth &
Hummel, 1993a,b). The sensor used a circular variable filter spinning at 5 Hz to
sequentially provide monochromatic, chopped light from a broadband quartz-
halogen source. A fiber optic bundle transmitted the monochromatic light to the soil
surface, allowing remote mounting of the major portion of the sensor. A lead sulfide
photodetector captured the energy diffusely reflected from the soil surface. The out-
put from the detector was conditioned by an AC-coupled preamplifier and inpot to
a PC through a 12-bit ND converter. The effective sensing range was from 1630
to 2650 nm, on a 52 om bandpass. The portable spectrophotometer predicted
organic matter in the laboratory, across a range of soil types and moisture contents,
with a predictive capability (r = 0.89, SEP = 0.40% SOM) approaching that of data
obtained on the same soils with a research-grade spectrophotometer. Field operation
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of the prototype sensor did not yield acceptable results (SEP = 0.91% SaM), due
at least in part to errors introduced by the movement of soil past the sensor during
the scanning process (Sudduth & Hummel, 1993b). Additional laboratory tests of
this NIR sensor with soils obtained ITom across the continental USA showed that

acceptable soil organic matter predictive capability could be maintained with a single
calibration equation for soils ITomthe lower U.S. Com Belt. Calibrations obtained

for wider geographic areas suffered ITom a significant decrease in accuracy. A
similar sensitivity analysis carried out on the soil reflectance database compiled by
Stoner and Baumgardner (1981) confirmed these results (Sudduth et aI., 1990).

The prototype NIR sensor was redesigned for improved accuracy, faster data
collection, and improved portability (Sudduth & Hummel, 1993c). Changes were
made to the optical design of the sensor for increased spectral resolution and
improved signaVnoise ratio. Electronic modifications reduced the complexity and
amount of off-line computation required to process the reflectance signal to usable
form, and a dedicated single-board computer was implemented for system
calibration and optical performance evaluation. Bandwidth of the revised instrument
was 45 nm, wavelength instability was essentially eliminated; and reflectance diita

could be obtained on-line within 10 s. Although optical performance and reliability
were improved, the ability of the sensor to estimate soil organic matter was
essentially unchanged from the initial prototype.

Soil Moisture

The portable NIR spectrophotometer developed by Sudduth and Hummel
(1993a) for organic matter measurement also was usable to measure soil moisture.
Spectral reflectance data obtained in the laboratory (Sudduth & Hummel, 1993b)
were correlated with laboratory determined gravimetric moisture for 30 Illinois soils.
Moisture content was predicted with a SEP of 1.88% (r = 0.94) for a data set
including soil moisture tensions of 0.033, 0.33, and 1.5 MPa, and air-dry soil. In
terms of the coefficient of variation (CV), the prediction of soil moisture was more
accurate than the prediction of SaM.

Microwave reflectance measurements of soil water were examined

theoretically by Whalley and Bull (1991). They reported that microwave reflectance
would likely give good estimations of the surface water content to a depth of
approximately 0.1 m; however, they envisioned difficulties in calibration of the
reflectance signal and in the dependance of the dielectric constant on soil type.
Ground penetrating radar (GPR), which measures the time delay of a reflected signal
to quantifY the depth to a dielectric interface, may have some promise for soil
moisture measurement. Truman et al. (1988) noted that the dielectric constant of a
saturated soil layer is much greater than that of an unsaturated soil, making it
possible to locate that interface by GPR.

Whalley et al. (1992) developed a capacitance-based soil moisture sensor
that was designed to be installed on a single soil-engaging tine. Field tests were
promising, although there was some dependence of sensor calibration on dry bulk
density of the soil. Whalley (1991) also developed a microwave soil moisture sensor
designed to be incorporated into a narrow cultivator tine. Good calibrations were
obtained in a soil bin with uniform soils, but calibrations for structured soils were
not as good, due to the small sampling volume of the sensor.

Soil electrical resistance measured between two soil engaging tines or shanks
was used in the development of a moisture-seeking planter controller (Carter and
Chesson, 1993). Soil electrical resistance was found to change rapidly with depth
near the soil moisture ITont, allowing control of seed placement based on measured
resistance. Use of such a sensor to measure actual soil moisture could be

complicated by the dependence of soil electrical conductivity on soil salinity and clay
content, along with soil moisture (Rhoades et aI., 1989).

Since soil conductivity is a function of soil salinity, clay content, and water
content, soil conductivity measurements have the potential for providing estimates
of within-field variations in these properties for SSM; however, care must be taken
to understand the effects of the other, nonestimated properties on the conductivity
measurement. In areas without saline soils, spatial variation in soil moisture content
is often a major factor determining variations in bulk soil conductivity. Kachanoski
et aI. (1988) found that soil electrical conductivity was highly correlated with soil
water content stored in the top 0.5 m, within a single field and on a single
measurement date. Sheets and Hendrickx (1995) measured electrical conductivity
along a 1950 m transect in New Mexico during a 16-mo period and found a linear
relationship between conductivity and profile soil water content. Independent
measurements of soil water at several calibration points along the transect were
required for each measurement date. In both of these studies, soil conductivity was
measured using commercial electromagnetic induction (EM) ground conductivity

Whalley and Stafford (1992) reviewed a number of sensing methods
applicable to soil water content measurement for SSM. They categorized these as
noncontact methods, including near inITared reflectance (NIR), ground penetrating
radar (GPR), and microwave reflectance; and contact methods, including
microwave, capacitance, and resistance.

Optical sensing of soil moisture using NIR takes advantage of the several
water absorption bands in the NIR spectrum. Researchers have used data obtained

at two (Christensen & Hummel, 1985; Kano et aI., 1985) or three (Dalal & Henry,
1986)wavelengths,andhaveusuallyobtainedgood correlations(r > 0.9) between
soil moisture and reflectance. A disadvantage to the NIR approach is that it is only
responsive to the water content at the measurement surface. .

Price and Gaultney (1993) developed a real-time optical sensor for soil
moisture based on measuring the relative reflection of light from the soil surface
illuminated by three sequentially pulsed laser diodes at 750, 810, and 840 nm. A
maximum likelihood classifier algorithm was used to determine the most likely
moisture content of the soil. In laboratory tests conducted on 29 soils encompassing
three soil textures (loam, silt loam, and silty clay loam) and five soil moisture
tensions, the sensor was able to classifY 82% of the samples correctly into moist
(0.01, 0.03, or 0.05 MPa) or dry (0.1, or 1.5 MPa) categories. In field tests, at
speeds of2 to 3 Ian hr'l, the sensorcorrectly classified 82% of the soil samples. As
long as soil type did not vary greatly, the sensor could estimate soil moisture with

sufficient accuracy for planting depth control, where the objective is locating the
drying ITont where soil moisture transitions from dry to moist in a relatively small
depth increment.



190 SUDDUTH ET AL. SENSORS 191

Soil Nutrients

obtained immediately in the field; however, the labor and time required for soil
sample collection makes them less than perfect for SSM soil analysis.

Adsett and Zoerb (1991) reported on real-time N03-N sensing using ion
selective electrodes. An automated field monitoring system consisting of a soil
sampler, N03":'N extraction unit, flow cell, and controller was laboratory and field
tested. Their soil sampling concept, based on a chain saw bar, appeared to have
potential as a continuous soil sampler; however, the consistency of the sample varied
with soil type, relative forward speed, compaction, and soil moisture content. The
soil sample consistency affected the performance of the N03-N extraction system
and the mixing and filtration system required improvement. The N03-N extraction
time and methodology were limiting factors in the system. Additional research was
planned to improve the mixing and extraction phases. Thottan et aI. (1994) reported
on subsequent laboratory work on the effects of different soiVextract ratios and
extract clarity on electrode response and electrode response time. They found that
there was no significant difference (a = 0.05) among different soiVextract ratios
(1:15, 1:5, 1:3) and no significant difference among final N03-N concentration
indicated in either decanted, filtered, or soiVextract suspension samples. Normalizing
the response of the electrode for time showed that 80% of final concentration was
consistently indicated within 12 s, 40% within 6 s, and 10% within 4 s, which they
felt was within the time required for rapid in-field measurements.

Ion selective field effect transistors (ISFETs), which are based on the same
chemical principles as ion selective electrodes, have several possible advantages
such as small dimensions, low output impedance, high signal-to-noise ratio, fast
response and the ability to integrate several sensors on a single electronic chip.
ISFETs have the disadvantage, however, of greater long-term drift and hysteresis
than ion selective electrodes. The use of a dynamic measurement system such as
flow injection analysis (FIA) minimizes the effects of drift and hysteresis and exploits
the specific properties ofISFETs. Birrell and Hummel (1993) investigated the use
of a multi-ISFET sensor chip to measure soil N03-N in a flow injection analysis
(FIA) system using different flowrates (0.04-0.19 mL s.'), injection times (0.25-2
s), and washout times (0.75-2 s). The multi-ISFET/FIA system was successfully
used to measure soil N03-N in manually extracted soil extracts (r > 0.9) using a 0.5
s washout time and a 0.75 s injection time (Hummel & Birrell, 1995). A prototype
automated extraction system was tested; however, the extraction system did not
consistently provide soil extracts that could be analyzed by the FINISFET system
and required considerable improvement. The rapid response of the system allowed
samples to be analyzed within 1.25 s and the low sample volumes required by the
multi-sensor ISFET/FIA system made it a likely candidate for use in a real-time soil
nutrient sensing system.

While ion selective electrodes have been used in soil nutrient testing for
many years, the disadvantage of real-time sensors based on this technology is that
a soil sample must be acquired, mixed with an extractant and a soil extract obtained
for analysis. A noninvasive technology would provide significant advantages in the
development ofrea1-time soil nutrient sensors. Preliminary studies by Upadhyaya et
aI. (1994) found that the signals trom gamma ray irradiation were not strong enough
for practical real-time soil N03-N sensing and that nuclear magnetic resonance
(NMR) techniques were infeasible,while dielectric dispersion methods showed some

meters, the EM-31 and EM-38 (Geonics Ltd.', Mississauga, Ontario, Canada).
These portable meters allow immediate, noncontact measurements of soil
conductivity.They can be coupledwith GPS location equipmentand data loggers,
and pulled across a field using an all-terrain vehicle (ATV) to rapidly map
conductivityvariationsover large areas (Jayneset aI., 1995a).

At present, the focus of the commercial implementation of SSM is on yield
mapping and variable rate fertilizer application; however, unlike yield mapping,
where yield monitors are already commercially available, automated soil nutrient
sensors are still in the early development stages. There is an ongoing need to
develop automated systems to decrease the cost of soil nutrient sampling and
improve the accuracy of soil nutrient maps. Current real-time nutrient sensor
development has concentrated on N sensors, due to the economic importance ofN
fertilizers, potential environmental problems associated with excessive N03-N in
water, and the considerable temporal and spatial variability of N03-N. The
variability of soil NOrN levels dictates that sampling occur within a short time prior
to fertilizer application and at a very high sampling intensity. Since K and Pare
immobile nutrients, and soil pH changes relatively slowly, mapping of these soil
properties need not be carried out every year, allowing the cost of traditional soil
sampling techniques be spread over multiple years.

During the past few years, several different systems for field analysis of soil
nutrients have become available. Test kits, such as those provided by LaMotte and
Hach, are available for the major soil nutrients (N in both N03-N and NH4-N forms,
K, and P205), soil pH, and many of the micronutrients. The tests are generally
colormetric methods using chemical reagents or chemical test strips. The
colorimetric analysis methods range from visual comparison of the color
development to a color chart or color comparator disks, to the use of pocket
colorimeters or spectrometers. Most chemical test strips are visually compared with
standard color charts to determine the concentrations; however, newer systems like
the Agri-Lab from Spectrum Technologies (Plainfield, IL) and Reflectoquant
Analysis System have a digital test strip analysis system to provide the
concentrations directly. Several laboratory studies have shown that ion. selective

electrodes can be used to measure soil nutrients (Dahnke, 1971; Yu, 1985). Hand-
held Cardy meters for N03-N, K and Na ions which are based on ion selective
membranes and provide a reading in a matter of minutes are commercially available
(Spectrum Technologies). The accuracy offield tests with all of these portable units
depends more on the individuals conducting the test than the inherent accuracy of
the test method, making quality assurance difficult, With these test kits, results are

Mention of a trade name, proprietary product, or specific equipment does not constitute
a guarantee or warranty by the USDA-ARS or the University of Missouri and does not

imply the approval of the named product to the exclusion of other products that may be
suitable.
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encouraging results but were not investigated further. Dalal and Henry (1986) used
NIR reflectance to measure total N (r>0.92) in soils with some success; however,
the prediction capability ofNIR at lower concentrations of total N (Kjeldahl total
N < 0.05%) was poor and it was not possible to predict total N across a wide range
of soil colors. Dalal and Henry (1986) found that for certain soils the NIR technique
erroneously predicted total N and the standard error of prediction increased.
Upadhyaya et al. (1994) used NIR reflectance in conjunction with partial least
squares regression (PLSR) and Fast Fourier Transform (FFT) analysis techniques
to sense mineral soilN03-N (0-300 mg kg-t N03-N). The correlation between the
NIR methods and standard N03-N methods was high (r > 0.9), if the correlation
was blocked by moisture content (air dry, 10%, 15%) and N fertilizer source (
NH3N0:J, Ca(N0.J1). The standard error of prediction ranged ITom6-38 mg kg"t;
however, when the two fertilizer sources and three moisture contents were pooled
the correlation decreased (r = 0.70) and the standard error increased to 43 mg kg-to
Upadhyaya et al. (1994) found that both the FFT and PLSR analyses reasonably
predicted the soil mineral-N content, although the standard prediction error was
fairly high and needed to be reduced for successful application of this technique!

Researchers at the Georgia Institute of Technology developed an integrated
optical ammonia sensor capable of measuring a range ofNH3 levels from less than
0:1 to 1000 mg kg-t (Hartman et aI., 1995) for quantifying NH) volatilization from
cropland (Walsh et aI., 1990). The sensor was based on an optical waveguide
structure using an interferometric mode. The main focus of the project was on
optimizing fertilizer use through improving application methods, and while NH3
volatilization was not a direct indicator ofN availability in the soil, NH3 emissions
were seen as indicators of soil chemistry as it related to soil fertilizer management
techniques (Babbitt, 1991).

Crop Technology (Houston, TX) has developed and brought to the market
a variable N application system. The original prototype used soil slurry electrical
resistivity to estimate soil N03-N concentrations (Colburn, 1986). The currently
available system uses rolling coulters as electrodes to determine soil N03-N levels
(Crop Technology, 1991); however, no information has been made publicly available
on the operating principles of the sensor.

An integrated system of soil sample collection, automated sample
preparation and chemical analysis with decision support software l!as been
developed by Tyler Ltd. (McGrath et al., 1995). The sampler automatically collected
samples across the field and packaged them in plastic bags that were connected to
form a long band. The banded samples were then analyzed using an automated
laboratory workstation set up near the field. The initial preparation of the automated
workstation required 90 minutes and then samples could be analyzed at a rate of 1
minot.Macro-nutrient concentrations (N03-N, NH4-N, K, P, Ca, Mg), particle size
«10,.., 10-100,..), overall humus, alkali-soluble humus, sequioxides, carbonates and
soil acidity were determined (McGrath et aI., 1995). The analysis results were then
input into an expert system to determine fertilizer recommendations.

Soil structure or degree of aggregation influences root growth, hydraulic
conductivity, and aeration due to the size of the pores present in the soil matrix. The
structure of the soil surface, or seedbed, is important in providing good soil-seed
contact for germination. The presence and location of a restrictive layer, such as a
hardpan, plowpan, or claypan, can be a major factor in crop growth- In a more
general sense, the soil physical condition can be viewed as those physical
characteristics that are important for plant growth and are influenced by tillage
operations. The ability to precisely manipulate a soil ITom an initial to a desired final
physical condition implies the need for sensors to assess this property (Schafer et al.,
1981).

Zuo et al. (1995) used a fiber optic displacement sensor to evaluate air-dry
soil aggregate size in the laboratory. This commercial sensor provided an output
signal proportional to the distance ITomthe sensor to the soil surface. The spatial
pattern of peaks in the sensor output correlated well with soil aggregate size. This
measurement also was relatively insensitive to the distance between the sensor and
the soil surface. Stafford and Ambler (1990) reported on a computer vision system
used to assess seedbed structure. Tests indicated that data from the vision system
compared wen with the traditional sieve analysis for aggregate size.

Stafford and Hendrick (1988) investigated variations in soil strength for
sensing of compaction-induced hardpans, as an input to a tillage control system.
They found that the forces on a small blade mounted behind a subsoiler tine and
projecting down into undisturbed soil were indicative of soil strength. A tillage
control system was proposed where tillage depth would be continuously varied in
response to the location of the maximum soil strength, assumed to be at the level of
the pan. Raper et al. (1990) successfully used ground penetrating radar (GPR) to
sense hardpan depth for two soils in a soil bin. They also noted that information on
the relative density of the hardpan might be contained in the GPR signal, but this
analysis was hampered by the absence of digital data recording in the GPR unit they
used.

Soil Texture, Structure, and Physical Condition

Soil physical condition sensing for tillage control was investigated by Young
et al. (1988). They used time series analysis techniques, including autoregressive
modeling, applied to instantaneous draft (horizontal force) measurements from
wedge and blunt vertical chisels. Mean draft, residual draft, and the autoregression
coefficients were sufficient to characterize soil physical condition, but they noted
that a major difficulty of their work was the need to specify the desired soil
condition based upon agronomic considerations. Smith et al. (1994) built upon this
work and investigated coulter draft forces as an indication of soil condition.
Roytburg and Chaplin (1995) proposed using soil resistance force, as measured with
an extended octagonal ring transducer, as an indicator of the changes in soil
condition during tillage.

Soil conductivity measurements can provide information on soil texture, in
addition to estimating soil water content as discussed earlier. Williams and Hoey
(1987) used EM measurements of soil conductivity to estimate within-field
variations in soil clay content. Doolittle et at. (1994) related EM measurements to
the depth of a cIaypan horizon by means of an exponential regression (r = 0.81). An
automated EM sensing system was then used to map cIaypan depth across a number
of fields by Kitchen et al. (1995). They obtained calibration measurements ofSoil physical characteristics are extremely important for crop production.
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CROP SENSING

chlorophyll content for each growth stage and hybrid combination were not
significantlydifferent, and a single regression equation using all the data was valid.

Schepers et al. (1992) found that factors such as crop growth stage, hybrid,
and timing and type of N fertilization all affected the feasibility of calibrating the
SPAD-502 chlorophyll reading to leafN03-N concentrations across all conditions;
however, both Schepers et al. (1992) and Wood et aI. (1992) found that the
chlorophyll meter readings correlated as well or better with yields than did leafN
concentrations. Schepers et al. (1992) proposed normalizing SPAD-502 readings
relative to an adequately fertilized area of the field, so that the normalized data
would essentially be internally calibrated for each field, hybrid, stage of growth and
cultural practice. Blackmer et al. (1993) reported that the chlorophyll meter readings
were affected by within row plant spacings and that plants having extreme spacings
should be avoided when using the chlorophyll meter, since plant spacing had a
greater effect on chlorophyll meter readings than leafN concentrations. Blackmer
and Schepers (1994, 1995) used a sufficiency index (SI = field meter
reading/reference meter reading from adequately fertilized area) and provided
additional N fertigation during the season when the index decreased below 0.95, to
prevent yield loss. Schepers (1994) reported that while leaf N concentration
increased with luxury consumption ofN, the chlorophyll meter did not respond to
luxury consumption, simplifying calculation of the sufficiency index to distinguish
between N deficient crops and N sufficient crops.

The studies mentioned above all investigated reflectance characteristics of
single leaves, however many papers report on the use of canopy reflectance
measurements to determine the physiological condition of crops. Such canopy
reflectance measurements may be acquired by means of remote sensing techniques,
or through the use of close-range sensors attached to equipment operating within
a field. Although changes in leaf reflectance are important stress indicators,
differences in leaf area index (LAI) are fTequently more useful for spectrally
separating healthy fTom stressed plant canopies (Knipling, 1970). Changes in LA!
can result in changes in spectral reflectance of crop canopies in the infrared and near
infrared without any change in'the reflectance properties of individual leaves
(Colwell, 1974). Stanhill et al. (1972) reported that the spectral response ofN-
deficient wheat (Triticum aestivum L.) was primarily related to total phytomass and
that leaf optical properties were secondary. Although Walburg et al. (1982) and
Hinzman et al. (1986) were able to distinguish between com and wheat canopies
with different levels ofN fertilization, the differences in spectral response between
treatments were a result of soil cover differences, LAI, and leaf pigmentation values,
all of which changed with N treatment.

Takebe et al. (1990) reported on the use of a Canopy Green Meter (Model
CP-l, Minolta Corp.) which used a ratio of the spectral reflectances of the crop
canopy at 800 and 550 om to the spectral reflectance of a standard white surface to
determine an index called Green Color Intensity. The intensity of solar radiation
affected measurements and problems were encountered with measurements taken
during sunny or windy periods and early in the morning or late in the evening;
however, meter readings for a rice canopy were highly correlated to the total N and
chlorophyll content (~= 0.81 and 0.86, respectively) fTomthe second leaffTom the
top of the canopy. Blackmer et al. (1994) found that leaf reflectance at 550 om was

claypan depth with a soil probe at a number oflocations within a field to remove the
effects of temporal variations in soil water content and temperature. Since soil
conductivity integrates texture and moisture availability, two characteristics that
both vary over the landscape and also affect productivity, EM sensing of
conductivity shows some promise in interpreting grain yield variations, at least in
certain soils (Sudduth et aI., 1995; Jaynes et aI., 199580Kitchen et aI., 1995). EM
data also have been used to estimate other soil properties related to clay content,
including cation exchange capacity (McBride et al., 1990) and atrazine partition
coefficients (Jaynes et aI., 1995b).

Crop Stress and Nutrient Status

Generally, fertilizers are applied to crops according to soil fertility
recommendations based on soil samples. However, for nutrients such as N that

exhibit significant temporal variations, climatic conditions between soil sampling and
the period of maximum N intake cause considerable uncertainty on how much
fertilizer to apply. The development of sensors that monitor crop nutrient status
during the growing season could allow a reduction of initial fertilizer application
rate, with additional fet:tilizer applied during the growing season if the crop
experiences nutrient stress.

Benedict and Swindler (1961) reported on an inverse relationship between
reflectance and chlorophyll in soybeans and showed that reflectance measurements

could be used to follow changes in chlorophyll content. Thomas and Oerther (1972)
found that the N content in pepper (Capsicum frutescens)leaves was highly
correlated with reflectance at 550 om and 675 nm (r= 0.86 and 0.81, respectively)

and reported that the prediction error was <0.7% N content. AI-Abbas et al. (1974)
analyzed the spectra of normal and nutrient deficient (N, P, K, S, Ca, Mg) com
leaves and found that the nutrient deficiencies led to a reduction of leaf chlorophyll
content, which then altered leaf color, spectral reflectance and transmittance in the

visible region of the spectrum (500-750 om). Thomas and Gausman (1977)
investigated the effects of leaf chlorophyll and carotenoid concentrations on
reflectance at 450, 550, and 670 nm for eight different crops, concluding that the
550 om wavelength was superior to the 450 and 670 nm wavelengths f~r relating
reflectance to either total chlorophyll or carotenoid concentration.

A portable leaf chlorophyll meter (SPAD-5011ater replaced by the SPAD-
502, Minolta Corp.) has been developed. The later version of the meter has two
light-emitting diodes, active at 650 and 940 om. The chlorophyll content of a small
section of the leaf is determined using the ratio of transmittance at 650 om, which
is affected by leaf chlorophyll content, and transmittance of light at 940 om, which
is not sensitive to chlorophyll content and serves as a reference. The meters have

successfully been used to determine leaf chlorophyll in rice (Oryza sativa L.)
(Takebe et aI., 1990), sorghum (Sorghum hicolor L. Moench) (Marquardt and
Lipton, 1987), tomato (Lycopersicon esculentum L.) (Tenga et aI., 1989) and com
(Dwyer et al., 1991; Wood et aI., 1992; Schepers et aI., 1992). Dwyer et al. (1991)
reported that the individual regressions of chlorophyll meter readings and
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highly colTelated (il = 0.90) to both chlorophyll meter readings and leafN content
for four hybrids grown with five different N application rates. Blackmer et al. (1995)
used aerial photography to measure the light reflectance centered on 550 nm ITom

a field and showed a linear relationship between grain yield and measured light
reflectance values from a single site with one hybrid and 10 N application rates.
Bausch et al. (1994) developed a reflectance index using spectral reflectance
measurements of the crop canopy in the blue (450-520 nm), green (520-600 nm),
red (630-690 nm) and NIR (760-900 nm) wavelengths, similar to the sufficiency
index developed by Schepers et al. (1992) ITom SPAD readings. The reflectance
index was calculated as the NlR/green ratio ITomthe treatment area divided by the
NlR/green ratio ITomthe reference area with adequate N. There was almost a 1:1

relationship between the reflectance index and sufficiency index, except during early
vegetative growth when soil background effects caused differences. .

Stone et aI. (1995) reported on the development of a tractor-mounted crop
nutrient sensor based on spectral reflectance. The integrated sensor consisted of

photodiode detectors and interference filters for red (671:1: 6 nm) and NIR (780:1:
6 nm) spectral bands with a 0.46m wide by 0.075 m long spatial resolution, an'
ultrasonic sensor to measure the height of the reflectance sensor and a signal
processing system. The detector used the plant-N-spectral-index (PNSI), which was
calculated as I(NIR + red)/(NIR - red)l. Stone et al. (1995) found that the PNSI was
cOlTelated to total N uptake in wheat forage at different locations and stages of
growth. The PNSI was used for variable rate N application. Wheat grain yields
increased significantly with N top dressing in both the fixed rate and variable rate

treatments compared to the check plots; however, no significant differences in yield
were found between the fixed and variable rate treatments. Solie et al. (1995) used
geostatistics to investigate the spatial variation of the PNSI, to estimate the unit
application size. The range of spatial dependence depended on location of the
transect and the direction of travel with respect to the orientation of rows. Solie et
aI. (1995) determined that the fundamental application cell size was between 0.21
and 0.83 m long, by the sensor width of 0.46 m.

Several researchers have used machine vision and image analysis to detect
plant stress. Omasa et aI. (1987) reported on the development of an instrumentation

system for obtaining whole-leaf chlorophyll fluorescence images. Chlorophyll
fluorescence is a sensitive indicator of the effects of stress on the photosy.nthetic
process. Okamura et at. (1993) used imaging to determine the green chromaticity
of the youngest leaf of musk melon (Cucumis melo L.) plants to detect the start of
water stress in the plants. Casady et al. (1994) used machine vision to determine
various features of rice plants, such as projected plant area, plant height and width,
and leaf width, which were used in conjunction with SPAD chlorophyll readings to
develop several models representing the relationship between these mid-season
measurements and rice grain yield. Kole et al. (1995) studied the use of machine
vision to measure the top projected leaf area of lettuce (Lactuca savita L.) leaves
and used the rate of change in projected area to investigate the effect of nutrient
stress.

Plant Population

Plant population may vary considerably across a field, either due to planting
or emergence problems or because of pest infestations. In addition, variable rate
planters are now available, which allow changing of seeding rate based on
productivity variations within a field. A sensor that could determine plant population
would be desirable in either case, as population has been shown to have a significant
effect on com yield across soil types.

BilTell and Sudduth (1995) reported on a combine mounted sensor to map
com population at harvest. The sensor consisted of a spring loaded rod attached to
a rotary potentiometer, mounted on the row dividers on the combine head. The
sensor was tested under normal harvesting conditions at three different operating
speeds. Heavy weed infestations caused significant elTors at low speeds. The
accuracy of the sensor was speed dependent, and population prediction elTor using
the raw sensor outputs were <70, <20 and <5% (with one exception) for the 3.2, 5.6
and 8.0 km h-I tests. However, by using different time-based and distance-based
filtering techniques, the elTor could be reduced to <10% for the slowest speed, and
to <5% for the faster speed. The sensor consistently identified gaps in the row
regardless of combine speed and weed infestation levels.

Plattner and Hummel (1995) investigated the use of photoelectric sensors to
measure the distances between adjacent plants in a row, along with the stem
diameter of each plant. An emitter projected a light beam across the row to a
receiver as the sensor traveled down the row. The light and dark intervals resulting
from plants breaking the beam and forward velocity of the sensor were used to
determine the distance between plants. Preliminary results indicated the sensor could
operate at ground speeds of up to 3 m S-Iwith plant spacing accuracies of:l:3%.

PEST SENSING

Site-specific sensing of crop pests such as insects and weeds would allow
control measures such as crop protection chemicals to be applied only when and
where needed. Researchers have been able to detect some insect species by acoustic
methods (Hendricks, 1989). Work is ongoing to adapt this technology for remote,
in-field sensing of insect pests (McKinion, 1996).

In the area of weed detection, the ability to discriminate green vegetation
. from soil by ratioing the intensities of visible and near-infrared radiation reflected

from a surface was demonstrated nearly 20 yr ago (Hooper et aI., 1976). Relatively
simple two-wavelength sensors can locate green plant material on a background of
bare soil and control spray nozzles to spotspray for fallow weed control (Felton and
McCloy, 1992). Similar sensors have been used to control spray application of
herbicides between the rows of a row crop (Merritt et aI., 1994, Woebbecke et aI.,
1995a). Hanks (1995) reported on a sensor/nozzle unit that had been developed;n
cooperation with Patchen California, and tested on an 8-row toolbar for controlling
weeds in row middles. The Weed seeker (Patchen, Los Gatos, CA) projected a
5-mm-wide band of light onto the soil when positioned 30 to 90 cm above the soil
surface, and could detect green plant material as small as O.I cm2.

Research scientists also have attempted to distinguish weed species flom
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crop species on the basis of spectral properties (Franz et aI., 1991a) or plant
geometry (Woebbecke et aI., 1995b; Tian & Slaughter, 1993; Franz et aI., 1991b).
Guyer et aI. (1986) concluded that there is significant potential for image processing
to identi1Yweeds, particularly since only the crop species needs to be identified trom
among a range of weed species; however, Thompson et aI. (1990) reported that
weed detection between the rows of a drilled cereal crop was severely limited due
to the crop canopy, even at early stages in the crop growth cycle.

The high cost and complexity of machine vision systems and the voluminous
quantities of data to be processed, have led some researchers to conclude that, for
the foreseeable future, site-specific weed control will be based upon the
development of maps that will control sprayer output (Thompson et aI., 1991).

. Geographic information systems can be used to store maps of weed distributions and
to predict weed densities trom historical data (Brown et aI., 1990; Stafford and
Miller, 1993). Mapping of weeds at opportune times such as flowering and
senescence for control during the subsequent season could enhance the accuracy of
the map, as well as provide information on the species of the weed infestation
(Thompson et aI., 1991). The use of a map to control herbicide application during'
the next season is valid because many weed species appear in well-defined patches
that remain relatively static trom year to year (Brown et aI., 1990).

Crop Yield

number of other prototype units have been developed by public sector researchers
(i.e., Wagner & Schrock, 1989; Vansichen & DeBaerdemaeker, 1991). More
information on specific grain yield sensors can be found in another chapter of this
publication (pierce et aI., 1997, this publication).

Vansichen and DeBaerdemaeker (1993) developed a technique for
measuring com silage yield using torque transducers on the silage blower shaft and
cutterhead drive shaft. They found that these torque signals, integrated more than
a 2500 kg load of silage, were good estimators of silage flowrate. Blower shaft
torque was the better estimator, possibly due to a greater effect of material property
variations (e.g., stalk toughness) on cutterhead torque requirements. Auemhammer
et aI. (1995) developed a radiometric yield measurement system for a self propelled
forage harvester. This system used a radioactive source and detector placed on
opposite sides of the forage harvester discharge chute to measure the mass of
material flowing through the chute. They reported relative standard errors on a
trailer-load basis of 7.1% for a calibration developed using data trom 20 fields. The
error could be reduced significantly by calibration within individual fields. They
found that material moisture did not significantly affect the calibration, but that
different calibrations were required for different forage crops.

Wild et al. (1994) reported on a hay yield measurement system for round
balers. They used strain gages on the tongue and axle to weigh the baler plus bale,
both on-the-go and in a stationary mode, after the bale was completely formed and
tied. Accelerometers were mounted adjacent to the strain gages to measure vertical
accelerations during operation. When stationary, yields could be measured with
errors <2%. The authors stated that instantaneous yield determination on-the-go
was still under investigation, in order to develop an acceptable system.

Wilkerson et aI. (1994) developed a real-time cotton (Gossypium hirsutum)
flow sensor for yield mapping. An array of lights and a photo detector array were
installed on opposite sides of the cotton picker discharge chute, in order to measure
the light attenuation due to cotton passing through the sensor. In laboratory tests,
integrated sensor output correlated well with total cotton mass passing through the
sensor (r = 0.93). Settings for cotton flow rate and blower air flow rate also were
found to affect the calibration of the sensor.

A potato yield sensing system was described by Campbell et al. (1994),
building upon the work of Rawlins et aI. (1995). Idler wheels instrumented with load
cells were installed under the conveyor on a commercial potato digger, to weigh the
harvested potatoes. Association of these weights with field location was done by
measurement of conveyor speeds and lengths for calculation of the delay time from
digging to weighing. Hofinan et aI. (1995) described the use of a weighing conveyor
system for measuring sugarbeet (Beta vugaris L.) yield.

SENSING OF HARVESTPARAMETERS

Within-field variation of crop yield is an important input for site-specific
decision making. Crop yield is im integrator of many varying crop and soil
parameters, such as moisture, nutrients, or pest problems. Linking spatial
information on both yield and soil properties through a GIS system allows for
diagnostic determination of the predominant factor(s) controlling crop production.
This information then becomes the basis for developing precision input strategies.
Additionally, yield measurements can provide feedback on the effect of variable rate

application of inputs, allowing refinement of the application plan for future years.
There have been yield sensors developed for crops such as potatoes (Solanum

tuberosum L.), forage, and hay, but most yield sensing efforts have focused on.grain
crops.

Combine-based quantification of spatial variations in grain yield requires the
successful integration of several sensors and information sources. Grain flow rate
must be measured at some point on the combine, usually as the material enters the
grain tank. The grain transport dynamics of the combine must be modeled and used

to adjust the measured grain flow to recreate the actual rate of grain entering the
combine header (Searcy et aI., 1989). Combine forward velocity must be measured
or determined to convert from grain harvest rates per unit time to harvest rates per
unit area, or yield. In drilled grains, the width of cut must be measured to provide
an accurate measure of yield. Combine position within the field must be determined
and that data integrated with the other data streams. Finally, all these data must be

combined and processed to provide interpretable grain yield maps. Several grain
flow sensors are either on the market or in commercial development. In addition, a

Harvest Swath Width

Swath width measurement is important for narrow row or broadcast crops,
such as wheat, since use of a fixed swath width may significantly distort the actual
crop yield. Vansichen and DeBaerdemaeker (1991) used a commercial ultrasonic
distance transducer to measure actual cutting width for harvesting wheat. They
reported that the sensor had an accuracy of better than 2 cm when a clear crop edge
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was present. The need for additional work on this type of sensor was noted.

Crop Moisture

1991), they are susceptible to error due to coating with plant juices that are released
in the threshing section of the combine.

Other indirect methods of moisture measurement, such as
spectrophotometric methods and nuclear methods, have been developed. Norris
(1964) reported on the use ofNIR spectroscopy in an instrument developed for
measuring moisture content of grain and seeds. Early moisture meters based on this
method required the sample to be ground prior to moisture measurement, but recent
commercial introductions have featured transmittance spectroscopy of unground
samples (\Villiarns, 1987). The NIR approach also has been used in development of
a portable meter for measurement of the moisture content of grass and forage crops
(Stafford et at., 1989) Microwave spectroscopy has shown promise for moisture
measurement (Kraszewski & Nelson, 1994). Nuclear magnetic resonance can
provide rapid, highly accurate moisture measurement, and a commercial unit for use
in the food and grain millingindustries is available. All of these technologies require
expensive and, sometimes, bulky equipment. While these sensing technologies have
been proven, considerable additional development is necessary before they can
economically used for real time sensing of moisture content of biological materials
on mobile field equipment.

,-

The moisture content of the crop being harvested is an important attribute.

The efficiency and throughput capacity of the harvester, the storability of the crop,
and the viability of harvested seeds are affected by the crop's moisture content.
Harvested crop moisture content changes as the harvest season progresses and the
crop matures, but also with changes in weather during the harvest season. In
addition, rapid moisture content changes occur during a harvest day. Finally, harvest
moisture content varies depending upon location within the harvested area. Hunt
(1965) reported >1% variation in the moisture content of shelled com between the
ends of 15-m long rows. Accurate comparisons of yield levels at different locations
require that measured yield level be adjusted to remove the moisture contentvariable.

The sensing and measurement of moisture in a biological material is

complicated because water may be present in several different forms (Young, 1991i
Water may be present in a biological material as water of hydration, which is
chemically bound to the constituents. This water is typically not considered in
moisture content measurement. Water may be physically bound within the material
by surface forces in excess of the forces that act on normally condensed water, water
may be present as normally condensed moisture, and moisture may be present that
has passed through the cell walls and entered into the cytoplasm of the cell. These
last three forms of moisture are exchanged between the material and its
surroundings, and thus, enter into the sensing and measurement of moisture content.

Many moisture sensing technologies, such as oven methods, desiccant drying,
distillation methods, chemical methods, and gas chromotography, are unsatisfactory
for real time moisture measurement because of the lengthy time required to
complete the analysis. These methods also require the sample to be ground, which
may result in the gain or loss of moisture from the sample.

Sensing technologies that have application for real time moisture content
analysis use indirect measurement based upon some property of the material that
varies with moisture content. Electrical methods, based on either the conductance

or capacitance properties of the biological material, are widely used in tbe grain
marketing industry. These methods are rapid, simple, and may be nondestructive
(Young, 1991); however, conductance-type moisture sensors, whether of the bulk
or single kernel design, usually crush the sample since, in addition to moisture and
temperature, conductance is a function of the pressure exerted on the test material
by the electrodes (Young, 1991; Bonifacio-Maghirang et aI., 1994). Extensive tests
have been conducted to validate the calibrations of commonly used commercial
moisture meters (paulsen et aI., 1984), including capacitance-type meters. Sensors
based on the rate of change of capacitance with moisture content are often installed
in the clean grain transport system of a combine to sense moisture content of the

grain flow stream. These units sense the dielectric constant of a mixture of air,
water, and dry matter surrounding them, and are relatively unaffected by uneven
moisture distribution within the sample volume. While they are capable of moisture
measurement across a wider range than the conduttance-type sensors (Young,

EMERGING ISSUES IN SENSORSFOR SITE-SPECIFICMANAGEMENT

From the above discussion, the degree of activity in sensor development for
SSM data collection is evident. However, the state of the technology varies
considerably from one sensed property to another. Grain yield sensors are now a
reasonably mature, commercialized technology. Some sensors, such as those for soil
organic matter, have been the subject of much research effort, and may be usable in
a commercial setting following additional development efforts. Other sensors, such
as those for discrimination of weed plants from crop plants are still early in the
research and development cycle, and much additional basic and applied research will
be necessary to bring them to commercial fruition.

The efforts of public sector scientists and engineers are important in
development of sensors for SSM, especially for those sensing technologies which
are early in the development cycle. The long-term research and development efforts
requiredto bringa sensorfrom conceptto a viabletechnologyare often beyond the
capabilities (financial and/or technical) of companies in the agricultural sector.
Certainly there are sensors that have been and will be developed in the private
sector, but much initial development work will continue to be done at universities
and in government agencies.

. Another important issue impacting sensor development and the SSM
industry in general is that of standardization. Pressures of standardization are being
felt on several levels, from the need for standard data interchange formats, to
electronic communication standards, to standard methods of sensor (and. SSM
system) evaluation. For example, developers of SSM data analysis programs want
to be able to import data from a varietyof sources (includingsensors) in standard
formats, and then export standard control maps which can be used to drive variable-
rate application hardware.

Makers of agricultural equipment want to develop standard electronics
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communication protocols for mobile equipment, such that intelligent subsystems on
the equipment may be connected over a simple data bus, rather than requiring
complex, dedicated wiring harnesses to be installed. Stone and Zachos (1993)
described the application of the 11939/1S011783 vehicle network standard to

agricultural equipment. This standard provides support for SSM message
information to be transferred along the data bus, in addition to the more

conventional equipment operating messages (Stone, 1995). The potential adoption
of this standard by manufacturers of agricultural equipment has important
implications for developers of SSM sensing systems. It may one day be possible to
transmit data fToma sensor over the data bus, combine that data with GPS location
data, and store the combined data set in a dedicated computer onboard the tractor.
The standard also defines a virtual terminal device, which provides a display and
keyboard for the operator to interact with multiple onboard systems, including
sensor systems (Stone & Zachos, 1993).

Schueller (1995) has called for the adoption of standard procedures to test
the performance of SSM systems, including sensors, similar to the Nebraska Tractor
Tests, which provide unbiased performance data for comparison between tractof
models. Standard tests should be conducted using methods developed to repeatably
model real-world operating conditions. Results of these tests would provide the
potential SSM user with objective comparisons of competing systems and sensors.
Although the test results might not be indicative of actual field performance in all
cases, they would provide a starting point trom which other evaluations could be
developed.

Site-specificmanagement(SSM) requiresthe collection,coordination,and
analysis of massive quantities of data. Widespread adoption of SSM as a
management strategy will require improvementsin the accuracy, efficiencyand
economicsof thedata collectionandmanipulationprocess.These improvementswill
be obtained, in large part, through the use of electronic sensors for collection of
SSM data. Sensors will also play an important role in improving data collection
techniques for agronomicresearch in SSM. The current state-of-the-art of SSM
sensorsvarieswidely.Grainyieldsensorsare a relativelymature technologyilndare
commerciallyavailable.Other sensors are well on the way to commercialization,
while still others are currently the subject of basic engineeringresearch efforts.
Future research and development efforts will undoubtedly provide new and
improved sensors, leadingto opportunitiesfor improvedprofitabilityand reduced
environmentalimpact through the adoption of SSM.
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