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ABSTRACT
Spatial variability in soil properties has long been observed within

uniformly managed fields. Understanding the spatial characteristics of
soil properties would be helpful in understanding soil–landscape rela-
tionships and in the development of site-specific management. The
primary objective of this research was to quantify the spatial char-
acteristics of claypan soil properties for a 4-ha agricultural field located
in north-central Missouri. Soil samples were collected in 2002 at three
depths (0–7.5, 7.5–15, and 15–30 cm) on a 30-m grid. Samples were
analyzed for physical, chemical, and microbiological properties.
Handheld and mobile apparent soil-profile electrical conductivity
(ECa) values were also obtained. Spatial dependence was not iden-
tified for many properties. Yet, at a separation distance of |40 m,
clay and silt content, cation exchange capacity, and Bray-1 P were
spatially autocorrelated for the 15- to 30-cm depth. Soil ECa showed a
similar spatial autocorrelation. Spatial variations in most soil prop-
erties were better estimated by cross-semivariance analysis with ECa

as a secondary variable than by simple semivariance analysis. Clay
content was lowest and mostly homogeneous at the 0- to 7.5-cm depth
(mean 5 170 g kg21, SD 5 2.0), and highest and most variable at the
15- to 30-cm depth (mean5 410 g kg21, SD5 15.8). Thus, the spatial
characteristics of soil texture and related soil properties varied greatly
by depth and landscape position, probably the result of an uneven
distribution of topsoil caused by tillage-accelerated water erosion.
We conclude that characterizing the variation in the depth of the
claypan horizon is a helpful step in describing other properties for
these soils.

IN UNIFORMLY managed crop production fields, soil
characteristics are commonly observed to have signif-

icant within-field variability (Cline, 1944). The predom-
inant variability of a soil is determined by the cumulative
effect of natural factors involved in its formation,
including climate, topography, parent material, biological
activity, and time (Jenny, 1941). Crop management prac-
tices also contribute to the spatial heterogeneity of some
soil properties, beyond that attributable to natural pro-
cesses (Cambardella and Karlen, 1999). Thus, soils under
agricultural management are highly variable in chemical
and physical characteristics. Due to within-field variation,
uniform management of fields often results in overappli-
cation of inputs in low-yielding areas and underapplica-

tion of inputs in high-yielding areas (Davis et al., 1996;
and Ferguson et al., 2002). This is a reason for consider-
ing spatial variability of soil properties in management
decisions, with the potential result being more productive
and efficient crop management systems. Site-specific
management of soils and crops based on varying condi-
tions within a field provides optimalmanagement (Larson
and Robert, 1991). Numerous research efforts have been
aimed at comparing spatially variable soil characteristics
to spatially variable crop yields to develop site-specific
management practices (Cahn et al., 1994; Lund et al.,
1999; Drummond et al., 2003; Eghball et al., 2003; Kitchen
et al., 2003; Chang et al., 2004).

Quantifying spatial characteristics of soil properties,
particularly when these properties are related to specific
soil functions (e.g., crop production or water quality),
can help improve understanding of soil–landscape pro-
cesses and formulation of site-specific management;
however, intensive grid soil sampling and subsequent
laboratory analysis and interpolation for mapping such
properties is most often impractical because of time and
expense. These issues are less of a concern when sen-
sors are employed to gather spatial information about
soil and field characteristics. For example, a sensor tech-
nology commonly used for assessing soil variation is ECa.
Soil ECa can depend on various soil properties, including
soil water content, soil salinity, cation exchange capac-
ity (Rhoades et al., 1999; Corwin and Lesch, 2005), soil
particle-size distribution (Sudduth et al., 2003; Jung et al.,
2005), topsoil depth (Doolittle et al., 1994), and manage-
ment practices (Johnson et al., 2001, 2003).

Whether soil properties are assessed through soil
sampling or sensors, geostatistical techniques play an
important role in the quantitative evaluation of spatial
variability within a field. Classical experimental design
statistics assumes that the data are independent from
each other. If sampled data severely violate this assump-
tion, incorrect conclusions may be made. Because re-
sults from field sampling are often spatially dependent,
sampled data often violate the independence assump-
tion. The correlation structure of a measurement in
space (autocorrelation) provides insight into its spatial
structure and describes how it changes in space in rela-
tion to the sampling frequency (Kravchenko, 2003).
Spatial autocorrelation can also significantly influence
interpretation. Descriptions of how spatial relationships
change with distance of separation between measure-
ment points are accomplished with tools such as the
semivariogram and correlogram.

Interpolation techniques widely used to estimate var-
iability patterns of soil properties are kriging and
cokriging. Kriging is a geostatistical interpolation tech-
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nique that uses statistical properties of measured points
(Isaacks and Srivastava, 1989). Cokriging uses one or
more secondary variables to interpolate and accounts for
spatial cross-correlation between the primary and sec-
ondary variable (Goovaerts, 1998). Cokriging can pro-
duce much more accurate and reliable estimation results
than can the semivariance analysis technique (Krav-
chenko et al., 2002). A major disadvantage of geostatis-
tical interpolation of soil properties is the need for a large
number of soil samples that must be collected and
analyzed for valid representation of the unsampled area.
The economic impracticality of intensive soil sampling
is one reason the idea of measuring spatial variability with
sensors is appealing to producers (Kitchen et al., 2002),
as it meets the need of having spatially dense measure-
ments at a low cost.
Claypan soils, common in northeast Missouri and

southern Illinois, have a restrictive high-clay subsoil
layer usually occurring 20 to 40 cm below the soil sur-
face. Claypans create a unique hydrology, characterized
by slow water flow in the soil matrix of the restrictive
clay layer. A better understanding of the spatial char-
acteristics of claypan soil properties would be desirable
when managing these soils, which are sensitive to soil
degradation (e.g., runoff and erosion; Nikiforoff and
Drosdoff, 1943; Kitchen et al., 1998), have high variabil-
ity in crop productivity (Kitchen et al., 2005), and which
frequently contribute to water quality impairment
(Lerch et al., 2005). The claypan also has a large effect
on plant root development (Wang et al., 2002). Clay
content in the argillic horizon is generally .40% and is
comprised of smectitic (high shrink–swell) clay minerals.
Depth to the argillic horizon (or topsoil depth) of clay-
pan soils has been proposed as an important soil quality
indicator (Kitchen et al., 1999). Lerch et al. (2005) esti-
mated topsoil losses using GIS (geographic information
system) models and found spatial variance of topsoil

losses within a field as a result of long-term management
practices. In a previous study, claypan soil properties
were related to soil ECa, but the spatial characteristics of
these properties were not evaluated (Jung et al., 2005).

We hypothesized that similar spatial relationships
exist among claypan soil properties, and that descrip-
tions of the spatial characteristics of these properties
would be helpful in understanding soil–landscape rela-
tionships and in considering site-specific soil manage-
ment options. The objectives of this study were to: (i)
quantify the spatial characteristics of soil properties for
an agricultural claypan soil field, and (ii) evaluate if the
description of spatial variation in soil properties could
be improved by cokriging with soil ECa.

MATERIALS AND METHODS

Study Site

A 4-ha study site (Fig. 1), located 3 km north of Centralia in
central Missouri (398139480 N, 928079000 W) was selected from
a 35-ha research field. Mean annual temperature is |128C, and
mean annual precipitation is 1004 mm. An Order 1 soil survey
(1:5000 scale) conducted in 1993 described the soil series of
the study site as Adco (fine, smectitic, mesic Vertic Albaqualf)
and Mexico (fine, smectitic, mesic Aeric Vertic Epiaqualf), as
documented previously (Fraisse et al., 2001). These soils are
formed in loess or a combination of loess and pedisediment
and are poorly drained. They usually occur in upland areas
with slopes varying from 0 to 5%. Surface soil texture ranges
from silt loam to silty clay loam. The subsoil claypan horizons
consist of silty clay loam, silty clay, or clay (NRCS, 1995).
Within the study site, the topsoil thickness above the claypan
(Bt horizon) ranges from 10 cm to.100 cm. This site has been
managed in a corn (Zea mays L.)–soybean [Glycine max (L.)
Merr.] crop rotation under mulch tillage (i.e., crop residues
are generally left on the surface after tillage operations) since
1991 and has experienced significant topsoil loss from water
erosion as a result of |150 yr of agricultural practices (Lerch
et al., 2005).

Fig. 1. Research site and sampling design (dotted lines represent sampling transects E and H, which were selected to illustrate topsoil variation in
Fig. 9).
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Measurements and Analysis

Soil samples were collected in June 2002 at three soil depths,
0 to 7.5, 7.5 to 15, and 15 to 30 cm, using a 30-m grid sampling
design (n 5 55; Fig. 1). A real-time kinematic GPS (global
positioning system) survey (accuracy 2–5 cm) was used to
identify sampling locations. Three soil cores (5.5-cm diameter)
were taken by a hydraulic soil core sampler at each sampling
site and were appropriately prepared for physical, chemical,
and microbiological analysis. One extra soil core from each
site was taken to a depth of 100 cm for visually identifying
the claypan (Bt horizon) depth. Physical properties mea-
sured included soil particle size fraction (pipette method) and
soil bulk density (Db) following accepted methods (National
Soil Survey Center Staff, 1996). Measured chemical properties
consisted of CEC (cation exchange capacity) by the sum of
cations (1MNH4OAc extractable at pH 7.0), SOC (soil organic
carbon, pretreated to remove carbonates when necessary; dry
combustion, LECO, St. Joseph, MI), TN (total nitrogen, dry
combustion, LECO, St. Joseph, MI) and P by the Bray-1 ex-
traction method (Olsen and Sommers, 1982). Samples from the
shallowest soil depth (0–7.5 cm) were used to determine ag-
gregate stability, soil enzyme activity using the dehydrogenase
method (Casida et al., 1964), and microbial biomass C as re-
spired CO2–C using a 3-wk soil fumigation–incubation method
(Johnson et al., 1994).

Soil ECa data (n 5 55) were obtained at each location con-
current with soil sampling using a Geonics EM38 (Geonics
Ltd., Mississauga, ON, Canada) instrument. The EM38 was
operated in horizontal dipole mode at the soil surface, which
provided an effective measurement depth of |0.75 m. In this
mode, sensitivity of the sensor is greatest nearest the sensor
(i.e., at the soil surface) and declines exponentially with in-
creasing soil depth (McNeill, 1992). Given this, the sensor will
be, on average, twice as responsive to soil properties in the
surface 30 cm of soil (i.e., the sampling depth of this study)
than soil below 30 cm. Soil ECa data were also obtained from a
mobile ECa survey (EM38 operated in vertical mode with
|1.5-m effective depth) conducted on this field in 1999. Mobile
ECa data on an approximate 10-m grid (error ,2 m) were
extracted and used for this analysis (n 5 399). Procedures for
mobile EM38 operations and measurement depths, along with
a detailed description of the 1999 data collection, are given in
Sudduth et al. (2003).

Geostatistical Data Analysis

Measurements were assessed for spatial autocorrelation
among neighboring observations of a variable, X, using
Moran’s I (Moran, 1948; Boots and Getis, 1988). Moran’s I
was computed by dividing the spatial covariance by the total
variance according to

I 5
nOOZiZj

OZ2
i

[1]

where n 5 number of localities in an interval class, Zi 5 Xi 2
mean X, and Zj 5 Xj 2 mean X. Spatial autocorrelation is the
relationship among values of a single variable that comes from
the geographic arrangement of the areas in which these values
occur. It measures the similarity of objects within an area or
the degree to which a spatial phenomenon is correlated to
itself in space (Cliff and Ord, 1973, 1981). Moran’s I was de-
termined using a 150-m active lag distance (which is half of the
research site length), a 30-m first lag distance, and a 15-m lag
interval (GS1 software, Version 5.1, Plainwell, MI). The aver-
age number of sample pairs per distance class was 102 and
ranged from 52 to 184, above the minimum standard of 30

pairs recommended by Legendre and Fortin (1989). Moran’s
I values range from21 to 1. A positive value represents positive
spatial autocorrelation and a negative value represents negative
spatial autocorrelation. Following Snedecor and Cochran (1989)
and Lauzon et al. (2005), we concluded significant spatial auto-
correlation when the absolute value of Moran’s I was .0.3.

Geostatistics provided a tool for interpolation of unsampled
locations, taking into account the spatial correlation of paired
samples based on semivariance (Cliff and Ord, 1973). The
sample semivariogram, g(h) is commonly used to estimate the
structure of the spatial variation of a variable V. Semivariance
is defined as

g(h) 5
1

2n(h)
O [V(s) 2 V(s 1 h)]2 [2]

where V(s) and V(s 1 h) are the observed values of V at
location s and s 1 h, respectively, h is the separation distance,
and n(h) is the number of paired comparisons at the distance h.
The range is the separation distance beyond which two obser-
vations are independent of each other. The sill is the semi-
variogram value corresponding to the range. The discontinuity
at the origin is called the nugget effect and arises from a com-
bination of random errors and sources of variation at distances
smaller than the shortest sampling interval (Goovaerts, 1998).

Isotropic semivariogram models were fitted to the soil
properties. Lag-specific isotropic semivariogram models (i.e.,
maximum lag distance 5 150 m, first lag distance 5 30 m, and
lag distance interval5 15 m) were calculated and compared on
the basis of range, sill, and nugget among spherical, exponen-
tial, linear, and Gaussian models. Only the best model based
onR2 was reported. We assumed a property to have significant
spatial dependency when the spatial range was less than the
maximum lag distance, the model R2 was .0.5, and the pro-
portion of the non-nugget spatially dependent variability was
.0.5. Maps of soil properties were created by the block kriging
interpolation method for each sampling depth.

To investigate the possibility of using sensor data to improve
estimates of soil properties, isotropic cross-semivariogram
models were also fit to the measured soil properties, using soil
ECa from either handheld or mobile readings as the secondary
variable. Model parameters and significance were as defined
above for ordinary semivariogram models.

RESULTS AND DISCUSSION
Frequency Distribution of Soil Properties

Frequency distributions of the soil properties were
different by soil depth (Fig. 2). Soil bulk density values
were lower at the 0- to 7.5-cm depth due to tillage op-
erations and consequent mixing of crop residue with
topsoil. Clay and silt contents and CEC for the upper
two soil depths (0–7.5 and 7.5–15 cm) were notably dif-
ferent than the 15- to 30-cm soil depth. Distribution of
clay content and CEC were very similar and unimodal at
the two shallow soil depths and multimodal at the third
soil depth. High clay content and CEC at this depth
were clearly the result of sampling in the claypan (Bt
horizon). Low clay content and CEC at this depth indi-
cated that sampling excluded the claypan, and that the
claypan was apparently deeper within the profile.

Soil organic C and TN were highest near the surface
and intermediate in the deepest sampling depth. Several
explanations are possible for this observation. Previous
studies have shown that plant residues (e.g., quantity
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and quality of sources) affect C sequestration rates in
soil (Allison, 1973). Soil organic matter decomposition is
relatively dynamic at the shallow soil depth because of
soil disturbance from annual tillage practices, plant res-
idue inputs, and chemical fertilization. While not mea-
sured, the SOM (soil organic matter) turnover in the
15- to 30-cm depth may be slow because it is more stable
from decomposition. Also, the slightly higher SOC and
TN at the 15- to 30-cm depth than at the 7.5- to 15-cm
depth may be attributed to an increase in crop root
growth at the deeper depth in response to the morphol-
ogical characteristics of the claypan (argillic horizon).
Others have documented that the claypan can stimulate
root growth (Wang et al., 2002; Myers, 2005). Bray-1 P
was higher and more variable for the shallowest soil
depth (i.e., 0–7.5 cm), presumably an effect of fertiliza-
tion and plant residues. We conclude that significant
vertical spatial variation of many soil properties (i.e.,
variability among sampling depths) exists on this site.
Further, we assert that variation in clay content is the

primary driving factor causing vertical spatial variation
for many of the other soil properties measured like ECa
or CEC (discussed below).

Soil aggregate stability (Fig. 2) and microbial prop-
erties (not shown) were also highly variable and gen-
erally exhibited multimodal distributions. Soil ECa was
normally distributed for both the 2002 handheld and
the 1999 mobile ECa readings (Fig. 2). Handheld ECa
was positively correlated to coincident (within |2 m)
mobile ECa measurements (Fig. 3). The mean hand-
held ECa reading (47 mS m21) was slightly higher than
the mean mobile ECa reading (41 mS m21). Factors
potentially contributing to this difference included the
handheldECa readingbeing closer to the soil surface than
the mobile ECa reading, soil moisture differences at the
time the measurements were taken, and the differences
in weighting factors and effective measurement depths
between horizontal mode (handheld) measurements
and vertical mode (mobile) measurements (Sudduth
et al., 2001).

Fig. 2. Frequency distributions of soil properties by soil depth. Soil ECa (apparent profile electrical conductivity) was measured using two methods
and aggregate stability was only measured for the surface depth at each location. CEC 5 cation exchange capacity; SOC 5 soil organic carbon.
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Autocorrelation of Soil Properties
Spatial autocorrelations of soil properties were cal-

culated from grid points at 15-m lag intervals (Fig. 4
and 5). For many properties and soil sampling depths,
spatial autocorrelations were positive at a separation
distance ,50 m; however, significant spatial autocor-

relation (|I|. 0.3) was generally only found at the lower
end of separation distances for which calculations could
be made. This implies that we would have lost our ability
to determine spatial structure for these soil properties
had sampling spacing been .50 m. As examples, spatial
correlations of soil texture at the shallowest sampling
depth were highest and .0.3 at |40-m separation dis-
tance. Spatial autocorrelation at the 15- to 30-cm sampling
depth for clay content, silt content, CEC, and Bray-1 P
were also highest (.0.3) at|40-m separation distance.We
assume that, at the 15-to 30-cm depth, intact undisturbed
soil expressed inherent spatial characteristics. In contrast,
surface soil has been disturbed from tillage-accelerated
water erosion or deposition processes (Jamison et al.,
1968), and thus exhibited less spatial structure. For a sep-
aration distance .60 m, spatial autocorrelation of most
soil properties was generally neutral to slightly negative.
Spatial autocorrelation of soil microbial properties and
soil aggregate stabilitywas consistently close to zero for all
separation distances (Fig. 5). For these, our sampling
strategy failed to identify spatial structure.

Spatial autocorrelation of ECa for both handheld and
mobile readings was positive and .0.3 at the ,40-m
separation distance. At separation distances .60 m,
spatial correlation of ECa generally remained close
to zero.

Thus, the trend observed was positive spatial auto-
correlation at short-range distances (,50 m) and little or
no autocorrelation at greater distances. Overall, the

Fig. 3. Relationship between handheld and mobile ECa (apparent
profile electrical conductivity) readings.

Fig. 4. Spatial autocorrelation (Moran’s I) of soil physical and chemical properties by soil sampling depth. CEC5 cation exchange capacity; SOC5

soil organic carbon; TN 5 total nitrogen.
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similar patterns of spatial dependence indicate that soil
formation and degradation processes affect these clay-
pan soil properties in a similar manner.

Semivariance Analysis of Soil Properties
Several soil properties showed strong spatial depen-

dence at the three sampling depths (Table 1). Ranges of
spatial dependence from the semivariogram models
were highly variable among properties, varying from 71
to .150 m. Clay and silt content showed a range of
spatial dependence between 77 and 147 m at the shal-
lowest and deepest soil sampling depths, but the range
could not be determined at the intermediate sampling
depth. Semivariance of CEC at the deep sampling depth
was similar to silt and clay content. Soil ECa showed
spatial dependency at a range similar to that of soil tex-
ture. The ECa was correlated with clay content at the
subsurface soil depth. This result is reasonable because,
on claypan soils, ECa is largely affected by depth to the
argillic horizon (Sudduth et al., 2003). Soil organic C
(0–7.5 cm) and Bray-1 P (15–30 cm) also showed spa-
tial dependence. In other claypan soil investigations, soil
P at the 15- to 30-cm soil depth was found to be signifi-
cantly correlated with soil ECa (Jung et al., 2005).

Semivariogram models for TN, aggregate stability,
and microbiological properties generally did not show
evidence of spatial dependence. Thus, if spatial depen-
dence occurred with these properties, it must have oc-
curred at either shorter (,30-m) or longer (.150-m)
distances. Closer sampling locations (i.e., higher sam-
pling density) would be needed to determine if spatial
dependence occurred at shorter distances.

Cross-Semivariance Analysis of Soil Properties
To evaluate if soil ECa could be used to improve the

understanding of spatial characteristics of soil proper-
ties, cross-semivariance analyses were performed using
the handheld ECa readings (Table 2). Given the criteria
we used to identify significant spatial structure, cross-
semivariance with soil ECa enhanced detection of spa-
tial structure. For example, at the shallowest soil depth,

Fig. 5. Spatial autocorrelation (Moran’s I) of (a) microbiological soil
properties and aggregate stability for the 0- to 7.5-cm depth, and (b)
soil ECa (apparent profile electrical conductivity).

Table 1. Parameters† of the semivariogram models‡ for soil properties by soil sampling depth. Results are shown when range # active lag
distance and R2

. 0.5. Aggregate stability, soil enzyme, and microbial biomass data were only obtained for the 0- to 7.5-cm soil depth.
Soil ECa (apparent profile electrical conductivity) is a soil profile measurement and is not associated with a specific soil depth.

0- to 7.5-cm soil depth 7.5- to 15-cm soil depth 15- to 30-cm soil depth

Property Model C0 C0 1 C A0 PSV R2 Model C0 C0 1 C A0 PSV R2 Model C0 C0 1 C A0 PSV R2

m m m
Soil properties

Bulk density
Soil texture

Clay content G 213 589 147 0.64 0.93 S 1120 26950 77 0.96 0.65
Silt content S 334 1545 94 0.78 0.83 S 1480 23550 86 0.94 0.70
Sand content G 469 1075 134 0.56 0.95 S 460 921 117 0.5 0.61

Cation exchange capacity S 4.3 83 71 0.95 0.59
Soil organic C S 1.4 3.1 147 0.56 0.93

Total N
Bray-1 P G 0.6 2.3 144 0.74 0.85
Aggregate stability – – – – – – – – – – – –
Soil enzyme – – – – – – – – – – – –
Microbial biomass – – – – – – – – – – – –

Soil ECa

Handheld ECa S 20 53 92 0.63 0.76 – – – – – – – – – – – –
Mobile ECa S 0.01 23.1 80 0.99 0.90 – – – – – – – – – – – –

†C0 5 nugget; C0 1 C 5 sill; A0 5 range; PSV 5 C/(C0 1 C), which is the proportion of the non-nugget, spatially dependent variability as an indicator of
degree of spatial structure: as the value approaches 1, the spatial autocorrelation becomes stronger.

‡G 5 gaussian, S 5 spherical; for the gaussian model, A0 is the effective spatial range, or the point where the model reaches 95% of the sill value.
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spatial dependency was found for CEC, TN, and aggre-
gate stability (ranges of 59–104 m) when cross-semivar-
iance was used, but not with ordinary semivariance
analysis (Table 1).
A more spatially dense ECa dataset (mobile survey,

n5 399) was also used to estimate spatial characteristics

of soil properties by cross-semivariance analysis. Similar
to results for the handheld ECa survey, results for the
mobile ECa survey improved spatial structure determi-
nation when compared with semivariance analysis (data
not shown); however, no appreciable differencewas found
between cross-semivarigram results of the two different

Table 2. Parameters† of the cross-semivariogram models‡ for soil properties with handheld ECa (apparent profile electrical conductivity;
n5 55) as a covariate by soil sampling depth. Aggregate stability, soil enzyme, and microbial biomass data were only obtained for the 0-
to 7.5-cm soil depth. Results are shown when range # active lag distance and R2

. 0.5.

0- to 7.5-cm soil depth 7.5- to 15-cm soil depth 15- to 30-cm soil depth

Soil property Model C0 C0 1 C A0 PSV R2 Model C0 C0 1 C A0 PSV R2 Model C0 C0 1 C A0 PSV R2

m m m
Bulk density S 0.04 0.56 65 0.93 0.66 G 0.35 0.71 110 0.50 0.67

Soil texture
Clay content G 53 124 134 0.57 0.91 S 94 339 88 0.72 0.55 S 184 1026 88 0.82 0.74
Silt content S 81 219 95 0.63 0.77 S 108 412 90 0.74 0.65 S 201 970 95 0.79 0.78
Sand content G 94 189 145 0.50 0.90 S 68 159 113 0.57 0.78
Cation exchange
capacity

G 3.1 6.2 104 0.50 0.90 S 2.2 4.4 70 0.5 0.51 S 9.7 57 79 0.83 0.68

Soil organic C S 2.5 9.1 134 0.73 0.93
Total N G 0.4 0.8 100 0.52 0.86
Bray-1 P G 2.9 8.6 122 0.67 0.85
Aggregate stability E 0.1 37.1 59 0.99 0.66 – – – – – – – – – – – –
Soil enzyme – – – – – – – – – – – –
Microbial biomass – – – – – – – – – – – –

†C0 5 nugget; C0 1 C 5 sill; A0 5 range; PSV 5 C/(C0 1 C), which is the proportion of the non-nugget, spatially dependent variability as an indicator
of degree of spatial structure: as the value approaches 1, the spatial autocorrelation becomes stronger.

‡G 5 gaussian, S 5 spherical, E 5 exponential. For the gaussian and exponential models, A0 is the effective spatial range, or the point where the model
reaches 95% of the sill value.

Fig. 6. Interpolated maps of 15- to 30-cm CEC (cation exchange capacity) obtained by kriging and by cokriging with handheld ECa (apparent profile
electrical conductivity) and mobile ECa as a covariate. Mapped area is the same as that shown in Fig. 1.
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ECa datasets, even though the mobile ECa dataset had
more than seven times more readings. The power of sec-
ondary measurements in this case was not in improved

accuracy when predicting the primary variable, but rather
increasedmapping resolution. Figure 6 shows an example
of three interpolation results for CEC at the 15- to 30-cm
soil depth. Spatial detail was increased with cokriging
compared with ordinary kriging, but map resolution was
most detailed when the higher density mobile ECa mea-
surements were used as the covariate.

Using the spatial structure from the cross-semivario-
gram with handheld ECa as a covariate, clay content
was also mapped to show variation by soil depth (Fig. 7).
At the 0- to 7.5-cm soil depth, clay content was lowest
of the three depths measured (mean 5 170 g kg21, SD
5 2.0) and more evenly distributed across the field than
clay content at the other depths. At the 7.5- to 15-cm
soil depth, clay content increased (mean = 200 g kg21,
SD5 7.4), and at the 15- to 30-cm soil depth, clay content
was highest (mean5 410 g kg21, SD5 15.8), with obvious
steep clay content gradients occurring between back-
slope and footslope areas of the field (Fig. 1). At the 15- to
30-cm soil depth, high-clay-content areas (.400 g kg21)
were often found in summit and backslope positions (i.e.,
relatively high elevation), while low-clay-content areas
(,200 g kg21) were found in lower elevation footslope
positions. Pedisediments in the footslope area from
water erosion have effectively buried the higher clay con-
tent horizons to a depth below the sampling depth of this
study. Semivariograms and kriged maps for both hand-
held and mobile ECa are shown in Fig. 8. An area of
lower ECa in the middle part of the field was associated
with low clay at the deep soil depth (15–30 cm). Soil ECa
has previously been related to clay content in soil profiles
(Sudduth et al., 2003). In this case and for this sam-
pling depth, ECa could be used as a proxy for estimating
spatial characteristics of clay content. Soil at the 15- to
30-cm depth is generally below the soil profile subjected
to cultivation, hence this soil has had little disturbance

Fig. 7. Interpolated clay content maps for each sampling depth using
cokriging with handheld soil ECa (apparent profile electrical
conductivity; n 5 55) as a covariate. Mapped area is the same as
that shown in Fig. 1.

Fig. 8. Semivariograms and kriged maps of handheld and mobile ECa (apparent profile electrical conductivity). Mapped area is the same as that
shown in Fig. 1.
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by modern tillage practices. Furthermore, soil erosion
and deposition processes mostly impact the surface soil.
We recognize that our association exists primarily because
the claypan has a dominant texture change expressed at
the 15- to 30-cm soil depth for most areas of the field.
This investigation illustrates a major challenge with

spatial assessment of soil properties that have a distinct
vertical spatial component. Further illustrating this, cross-
sections showing the soil surface, depth of topsoil over the
argillic horizon and soil sampling depths are given in Fig. 9
for two east–west transects (transects identified in Fig. 1).
This illustrates how a given sampling depth may either
include or exclude a portion of the argillic horizon, de-
pending on position in the landscape. Generally, soils with
a deep claypan were found in the middle portion of the
transects, in the lower elevation areas of the field. Here,
soil sampling to 30 cm did not reach the claypan. In other
areas, such as part of Transect H, the claypan boundary
was included in the 7.5- to 15-cm soil sampling depth.
Through much of the field, the claypan boundary was
captured in the 15- to 30-cm soil sampling depth. Previous
erosion modeling for this field described topsoil move-
ment from upland landscape positions to lower landscape
positions (Lerch et al., 2005). Degraded claypan soils, like
those present in this field, offer a special challenge

when the soil morphology that is being sampled varies
so dramatically.We propose that understanding the varia-
tion in a horizon that has such a pronounced effect on
plant growth (Kitchen et al., 1999) and hydrology (Ghidey
et al., 2005; Kitchen et al., 1998), i.e., the argillic horizon
of claypan soils, is a critical step in characterizing the
behavior of that soil. In turn, steps to improve site-specific
management of these soils ought to consider how this
varying horizon is related to other soil and landscape
properties. For example, depth of the argillic horizon for
these soils has been shown to be significantly related to
subsoil fertility (Spautz, 1998) andpotential fertilizerman-
agement. Also claypan topsoil depth corresponds with
areas of fields vulnerable to sediment, nutrient, and her-
bicide losses with runoff (Lerch et al., 2005).

While assessing spatial characteristics of soil proper-
ties has recognized merit, major obstacles remain, limit-
ing wide adoption of this concept by crop producers. As
shown in this study, spatial variation within fields, both
between locations and by soil depth, is one of those
obstacles. Mapping of soil properties that have spatial
structure at short-range spatial dependencies will require
high-density sampling. This is generally cost and labor
prohibitive for most producers, unless sensors can be
employed to accurately and rapidly collect this informa-
tion. To educate and convince land managers to use soil
principles, technologies and procedures for economical
detection of variation will need to be developed.

CONCLUSIONS
Understanding spatial characteristics of soil proper-

ties may help to understand soil–landscape processes
and to optimize strategies for sampling and manage-
ment. In this study, we assessed spatial characteristics
of claypan soil properties obtained by soil sampling and
compared them with ECa readings. Spatial distributions
of soil properties (e.g., clay content, silt content, CEC,
and Bray-1 P) were significantly different by soil
depth. At the 15- to 30-cm depth, clay content, CEC,
and Bray-1 P were positively correlated at a separation
distance |40 m and were similar in pattern to both
handheld and mobile ECa readings. For many of the
properties measured, semivariance modeling did not in-
dicate strong spatial dependence within the 30- to 150-m
range; but when ECa was used in a cross-semivariance
analysis, with both handheld and mobile ECa as a sec-
ondary variable, determination of spatial characteristics
of some soil properties improved.

This research showed that spatial characteristics of
soil properties varied greatly by field position and by soil
depth, and that spatial characteristics of some soil phys-
ical properties were similar to spatial characteristics of
ECa readings. Thus spatial dependency was a function of
both field location and soil sampling depth. For some
soil chemical and microbiological properties, spatial pat-
terns were not observed using our sampling strategy and
analytical techniques, and therefore evaluation of their
spatial characteristics would require high-density sam-
pling. In conclusion, for properties found to have short-
range spatial dependency, traditional soil sampling will be

Fig. 9. Elevation of the soil surface, elevation of the bottom of the
three sampling depths (dashed lines), and elevation of the top of the
argillic horizon for two east–west transects (see transect locations
on Fig. 1). This illustrates how a given sampling depth may either
include or exclude a portion of the argillic horizon, depending on
position in the landscape.
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impractical and thus innovative sensor-based strategies
will probably be needed to capture spatial structure for
characterizing variability and management planning. For
this investigation on claypan soils, we conclude that de-
scribing the variation in depth of the claypan horizon is a
critical step in characterizing these soils.
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