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Knowledge of the relationship between crop yield and yield-limiting factors is essential for precision farming. However,

developing this knowledge is not easy because these yield-limiting factors are interrelated and affect crop yield in different

ways. In this study, data for grain yield and yield-limiting factors, including crop chlorophyll content, soil chemical

properties, and topography were collected for a small (0.3 ha) rice paddy field in Korea and a large (36 ha) upland com

field in the USA, and relationships were investigated with path analysis. Using this approach, the effects of limiting factors

on crop yield could be separated into direct effects and indirect effects acting through other factors. Path analysis provided

more insight into these complex relationships than did simple correlation or multiple linear regression analysis.

Results of correlation analysis for the rice paddy field showed that EC, Ca, and SiOz had significant (P<O.I) correlations

with rice yield, while pH, Ca, Mg, Na, SiOz, and PzOs had significant correlations with the SPAD chlorophyll reading.

Path analysis provided additional information about the importance and contribution paths of soil variables to rice yield

and growth. Ca had the highest direct effect (0.52) and indirect effect via Mg (-0.37) on rice yield. The indirect effect

of Mg through Ca (0.51) was higher than the direct effeCt (-0.38). Path analysis also enabled more appropriate selection

of important factor~ limiting crop yield by considering cause-and-effect relationships among predictor and response

variables. For example, although pH showed a positive correlation (r=0.35) with SPAD readings, the correlation was mainly

due to the indirect positive effects acting through Mg and SiOz, while pH not only showed negative direct effects, but also

negatively impacted indirect effects of other variables on SPAD readings.

For the large upland Missouri com field, two topographic factors, elevation and slope, had significant (P<O.l) direct

effects on yield and highly significant (P<O.Ol) correlations with other limiting factors. Based on the correlation analysis

alone, P and K were determined to be nutrients that would increase com yield for this field. With the help of path analysis,

however, increases in Mg could also be expected to increase com yield in this case. In general, path analysis results were

consistent with published optimum ranges of nutrients for rice and com production. We conclude that path analysis can

be a ~seful tool to investigate interrelationships between crop yield and yield limiting factors on a site-specific basis.

Keywords: Precision agriculture, Limiting factor, Crop yield, Path analysis

1. INTRODUCTION

The underlying concept of precision agriculture is to

recognize the existence of spatial variability in site variables

such as yield, soil properties, environmental factors, and

topography within fields, and to manage this variability
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accordingto site-specificconditionsand requirementsin

order to optimize crop yield and minimize environmental

damage. The cycle of precision agriculture, or site-specific.

crop management (SSCM), requires: (I) intensive data

collection, (2) decision making or managementplanning, (3)

precision field operationsand (4) evaluation (Sudduth, 1998).

Understanding the response of crop yield to yield-limiting

factors and the interrelationships among the factors. is

critically important for successful SSCM (Sudduthet al.,

1996).

Relationships between crop yield and yield-limiting factors

have traditionally been investigated by means of numerous

small plot trials over multiple years. However, this approach

assumes that all yield-limiting factors are included in the

process and the response curves are generally based on test

results averaged over areas such as a soil series, a single

field, or test plots (Kitchen et aI., 1999). With precision

agriculture technologies, it is possible to treat each individual

geo-referenced data location or small area within a field as

a "test plot". The availability of this relatively large amount

of data in SSCM has stimulated various approaches for

understanding the crop response to yield-limiting factors;

These approaches generally have involved either the appli-

cation of crop growth models (Fraisse et aI., 2001a; Irmak

et aI., 2001) or multivariate statistical analysis (Drummond

et al., 2003; Fraisse et al., 2001b; Sudduth et al., 1996).

Scatter plots and correlation analysis can be used to

visualize overall relationshipsamong field variables, while the

multiple linear regression approach provides a relationship

between a response variable (i.e., crop yield) and predictor

variables (i.e., yield-limiting factors) (Cambardella et al.,

1996; Mallarino et aI., 1996). These methods are relatively

easy to apply, but they are based on assumptions that: (I)

relationships between variables can be parameterized in a

suitable form and (2) yield-limiting factors are independent

of one another. These assumptions are generally not true for

spatial field data, leading to relatively small correlation

coefficients and coefficients of determination.

Because the relationships between crop yield and yie1d-

limiting factors can be nonlinearand complex,nonlinear

models and parametric nonlinear regression may provide

better results than linear methods. The most commonly

accepted models for nutrient response are linear-plateau,
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exponential and quadratic models (Tisdale et aI., 1999).

These nutrient response models, however, only represent the

response of crop yield to the quantitative change of a single
factor.

More flexible approaches such as the boundary line

method,projectionpursuit regressionand neural network

analysis have been demonstrated. The boundary line method

extractsa responsecurveat the upper edge of any bodyof

data, assuming that the curve defines the best performance

in .the population.Data below the boundaryline represent

locations where other, unmodeled factors are limiting yield

(Kitchen et al., 1999; Webb, 1972). Both projection pursuit

regression and neural network analysis provide general,

nonlinear, nonparametric approaches to data analysis. Pro-

jection pursuit regression represents a dependent variable as

the sum of a set of general (nonlinear) functions of linear

combinations of the independent variables, while neural

network analysis uses simple, highly interconnected multiple

layers that produce an output by responding to a set of

inputs (Drummond et al., 2003; Sudduth et aI., 1996).

One approach to address the problem of interrelationships

among yield-limiting factors is principal component analysis

(e.g., Dobermann, 1994; Fraisse et aI, 2001b). The principal

component approach transforms original, correlated data sets

into new uncorrelated data sets, called principal components,

which are linear combination. of the original variables

(Jensen, 1996). Investigating the loading of the original

variables to the principal components can help to organize

the original independent variables into groups that behave

similarly. However, after the principal component transfor-

mation is applied- it is often not easy to perceive the

response of yield to the original variables.

As another approach to deal with correlated data, path

analysis (e.g., Gravois and Helms, 1992) provides insights

intocorrelationstructuresamongvariablesusingboth corre-

lationand multiplelinearregressionanalyses.Path analysIs

differentiatesbetweendirect effects of an individualpre-

dictor variable and indirect effects of a predictor variable

acting throughother variableson a response variable(Williams

et aI., 1990). The use of path analysis is expanding in the

biological and agricultural sciences because of the insights

it can provide into correlation structures among variables

(Kasap et al., 1999;Krishnasamyand Mathan. 2001; Pantone



et al., 1992:Ssangoet aI., 2004).Examplesof previouspath

analysis applications include:

1. Effects of forage constituents, quantity of available

forage, and forage nutrients (N, P, K, and S) on the

per-acre weight gain of lambs (Williams et aI., 1990),

2. Evaluation of the effect of soil pH, cation exchange

capacity (CEC), organic carbon content and clay content

on adsorption of Cd, Cu, Ni, Pb, and Zn by soils (Kasap

et aI., 1999),

3. Interrelationships among rice yield and yield components

for direct-seeded rice cultural systems (Gravois and

Helms, 1992), and

4. Evaluation of the competitive interaction between a weed

(red rice) and cultivated rice (Pantone et aI., 1992).

The overall objective Of this study was to apply path

analysis to two sets of spatial data, including crop yield and

soil and plant properties. Specific objectives were: (1) to

evaluate spatial yield response to site variables, and the

interrelationships among those variables in terms of path

analysis "direct effects" and "indirect effects", and (2) to

discuss the use of path.analysis for precision agriculture and

its potential to analyze nonlinear interrelated factors.

2. MATERIALSAND METHODS

A. Data Acquisition and Processing

Two geo-referenced data sets composed of crop yield and

soil and plant properties were collected and processed. Data

were obtained from two fields: one located near Suwon in

the mid-west part of the Republic of Korea (field 1; 37.284

N, 126.956 E; 0.3 ha, 100 m by 30 m) and the other located

near Centralia, in central Missouri, USA (field 2; 39.230 N,

92.117 W; 35 ha, 790 m by 455 m).

Data for field I, a rectangular, rice (Oriza Sativa L.)

paddy field, were collected in 1999. Soil classification for

this field was Coarse loamy, mixed nonacid, mesic family

of Aguic Fluventic Eutrochrepts (Institute of Agricultural

Science, 1984). Rice was transplanted in late May, and

fertilizers were applied in early April and late July

according to RDA recommendations (NIAST, 1999). Data

collected from field 1 were rice yield, crop growth status,

J. of Biosystems Eng. Vol. 30, No.1.

and basicsoil properties.Riceyield (ton/ha)wasmanually

collected on October 13, 1999. The sampling grid spacing

was 10 m by 5 m. Yields were determined on 5 stalks,

collected at each of three locations in each grid cell. A total

of 180 yield samples (60 grid cells x 3 locations) were

collected. The samples were threshed with a wooden rice

thresher, and the weight and moisture content of each

sample were measured with an electronic scale and a

moisture meter. Chlorophyll content, an indication of the

growth status of the crop, was measured on June 6, 1999,

before heading of the rice. Data were collected with a

SPAD 502 meterl) (Minolta Camera Corp., Japan) on a 2-m

by 2-m grid. In each of the 750 cells, 30 SPAD readings

were obtained and averaged.

Althoughore planting would be a more standard

timing, in this study soil samples were collected to a depth

of 15 cm with a spade on October 28, 1999. Thus, the

samples reflected the effects of fertilizer additions throughout

the season and nutrient removal by the crop, and provided

an indication of whether fertility levels dropped below the

optimum range during the growing season. Soil sampling

was done on three different scales: (1) a 10-m by 5-m grid

covering the entire field (60 samples); (2) an intensive I-m

by I-m grid imposed at two 10-m by 10-m locations at the

edge and center of the field (200 samples); and (3) a coarse

20-m by 10-m grid covering the entire field (15 samples)~

Laboratory analysis was completed by the Soil Management

Division, National Institute of Agricultural Science and

Technology, Rural Development Administration, for the

following properties: pH, electrical conductivity (EC, dS/m),

organic matter content (OM, %), P20S(ppm), Ca (cmol/kg),

K (cmol/kg), Mg (cmol/kg), Na (cmol/kg), total nitrogen (N,

%), and Si02 (ppm). More details on the data collection in

field 1 are available in Chung et al. (2000) and Sung et al.

(1999).

The soils found at field 2 were of the Mexico series (fine,

smectitic, mesic aeric Vertic Epiaqualfs) and the Adco

series (fine, smectitic, mesic aeric Vertic Albaqualfs). These

. soils were tormed in moderately-fine textured loess over a

1) Mention of trade names or commercial products is solely for the
purpose of providing specific information and does not imply
recommendation or endorsement by NIAE, Korea or USDA-ARS,
USA.
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fine textured pedisediment and were classified as somewhat

poorly drained. Surfacetextural classesranged from silt

loam to silty clay loam. The subsoil claypan horizon (s)

were silty clay loam, silty clay or clay, and commonly

contained as much as 50 to 60% smectitic clay. Topsoil

depth above the claypan (depth to the first Bt horizon)

ranged from less than 10 cm to greater than 100 cm. The

field had been managed in a minimum-tillage com-soybean

rotation since 1990 (Sudduth et aI., 2003).

Com yield data for field 2 were obtained in 1997 using

a full-size combine equipped with a commercial yield

monitoring system and global positioning system (GPS)

receiver, using data collection and processing techniques

described by Birrell et al. (1996). Elevation and slope data

were obtained using a Nikon Topgun A200LG total station

surveying instrument (accuracy < I cm) and standard

mapping procedures. For soil properties, composite soil

samples to a 20-cm depth were collected on a 30-m grid in

the spring of 1995. Three soil cores obtained within a I-m

radius of each sample position were combined, oven dried,

and analyzed by the University of Missouri Soil and Plant

Testing Services Laboratory. Soil properties measured were

P (ppm), K (ppm) , pH, OM (%), Ca (ppm), Mg (ppm), and

cation exchange capacity (CEC, meq/IOO g). Apparent

electrical conductivity of the soil (ECa) was measured in

November of 1997 using a Geonics EM38 (Geonics Limited,

Mississauga, Ontario, Canada). The EM38 was operated in

the vertical dipole mode, using a mobile system and data

collection procedures described by Sudduth et al. (200I),

providing an effective measurement depth of approximately
1.5 m. More details on data collection in field 2 are

available in Drummond et al. (2003).

Not all variables were collected on the same spatial grid.

Therefore, the nearest neighbor method was used' to merge

all observations with the most sparsely collected data. A

total of 87 and 336 observations were obtained for fields I

and 2, respectively. Means and standard deviations for the

data sets, and optimum ranges of soil parameters for paddy'

rice (NIAST, 1999) and com (Buchholz, 1983) are sum"

marized in Tables I and 2. For rice, variables with mean

values below the optimum range were pH, OM, Ca, Mg,

and Si02, and variables with mean values abovethe optimum

range were P2Os, K, N, and EC. For com, variables with
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mean values below the optimum range were pH, P20S, Mg,

andK.

B. Analytical Procedures

Path analysis is a statistical technique that differentiates

between correlation and causation (Kasap et aI., 1999) using

both multiple linear regression and correlation analysis. An

importantconditionfor path analysis is that a cause-and-eftect

relationship between predictor variables and the response

variable is implicit. Researchers should have the causal

hypothesis, between crop yield and limiting factors in this

case, to run a path analysis.

Path analysis is based on interpretation of the normal

equations used to solve for standardized partial regression

coefficients in multiple regression problems. Information

obtained from a correlation analysis can be augmented by

partitioning the overall effects (described by the correlation

coefficient) of predictor variables on a response variable

into direct effects and indirect effects for a given set of

cause-and-effectinterrelationships(Gravois and Helms, 1992).

The direct effect is the partial regression coefficient of a

predictor variable (e.g., Mg in the soil) for a response

variable (e.g., rice yield). Indirect effects are those effects of

a predictor variable (e.g., Mg) on a response variable (e.g.,

rice yield) acting through other predictor variables (e.g.,

pH), and consist of correlation coefficients with the other

predictor variables (e.g., Mg \l's. pH) multiplied by the

corresponding partial regression coefficients for the response

variable (e.g., Mg vs. rice yield). A summation of the direct

effect and indirect effects results in the correlation coeffi-

cient. For example, the overall effect of Mg on rice yield

(described by the correlation coefficient) can be separated

into a direct effect (partial regression coefficient) and

indirect effects through other predictor variables such as pH.

Williams et al. (1990) provided an example of path

analysis for five predictor variables (x,-xs) and one response

variable (X6),and described the steps in path analysis:

I. Drawing a path diagram (Fig. I) from cause-and-effect

relationships between predictor variables (x,-xs, soil

properties and topographic variables in this case) and a

response variable (X6, crop yield in this case). Single-
headed and double-headed arrows indicate direct and

indirect effects, respectively.
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Fig. I Path diagram for five predictor variables and one response
variable. The variable U is the undeterminedportion or residual,
..;1- RZ (after Williams et aI., 1990).

2. Standardization of the variables, centered with means

equal to zero and scaled in standard deviation units, since

path analysis is based ,on the correlation structure.

3. Computation of standard partial regression coefficients,

called path coefficients (Pij) indicating direct effects, and

correlation coefficients (rij).

4. Completion of the path table in the form of normal

equations (equations I to 5). Use partial regression

coefficients for direct effects, and product of the direct
effect and correction coefficient for the indirect effect of

each predictor variable on the response variable.

Pl6 + rl2P26 + rl3P36 + rl4P46 + rlSPS6 = rl6

J. of Biosystems Eng. Vol. 30, No. I.

r21Pl6 + P26 + r23p-!'1j + r24P41j + r25PSS = r21j (2)

(3)

(4)

(5)

r31PW+ r32P26 + P36+ r34P46+ r35PSS= r36

r41Pl6 + r42P26 + r43P36 + P46+ r45PSS = r46

rS1PW + rS2P26 + rS3P36 + r54P46 + PS6=rss

In developing the path analysis for this study, crop yield

was the response variable and limiting factors such as soil

properties and topographic attributes were used as predictor

variables. Path analysis with the SPAD 502 reading as a

response variable was also conducted for field 1. The path

analysis method followed the above outline. First, all the

variables were standardized with means equal to zero and

standard deviations equal to one. Then, multiple regression

was applied to calculate the partial regression coefficients

for predictor variables. Pearson correlation coefficients were

obtained among the variables. Finally, path tables were

computed in the form of normal equations. Standardized

data, Pearson correlation coefficients, and standardized

partial regression coefficients were obtained using STAND,

CORR, and REG procedures in SAS version 8.2 (SAS

Institute Inc., Cary, N.C.). Instead of using all the predictor

variables, the forward variable selection option was used to

reduce multicollinearity among the variables and to enhance

reliability of the models, and the default significance level

for entry into the model (SLENTRY=O.5) was used.
(1)

Table I Means and standard deviationsof measuredvariables for field I (n=87), and optimum ranges of soil parameters for rice production.

Table 2 Means and standard deviations of measured variables for field 2 (n=336), and optimum ranges of soil parameters for com production.

Optimum rangela] 6.5-7.5 50-80

lal Ranges were based on data in Buchholz (1983).

0.41-1.32 0.33-0.50
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OM P"05 Ca Mg K Na N EC SiO" Yield
pH SPAD

(%) (ppm) -------------------( cmo I+/kg)------------------- (%) (dS/m) (ppm) (Mg/ha)

Mean 5.9 2.4 120 4.70 0.98 0.68 0.29 0.2 0.43 93.5 36.6 6.1

Std. 0.2 0.2 14 0.71 0.16 0.10 0.06 0.1 0.12 23.6 1.0 1.0

Optimum range[a] 6.0-7.0 2.5-3.0 80-120 5.0-6.0 1.5-2.0 0.25-0.30 <0.2 <0.2 130-180

[a] Ranges were obtained from NlAST (1999).

OM P205 Ca Mg K CEC ECa Elevation Slope Yield
pH

(%) (ppm) ---------------(cmot /kg)--------------- (meq/IOOg) (dS/m) (m) (%) (Mg/ha)

Mean 6.1 2.1 41 2.88 0.32 0.19 8.3 0.41 263.9 0.4 7.0

Std. 0.6 0.4 30 0.65 0.16 0.10 2.1 0.05 0.8 0.2 1.0
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3, RESULTSAND DISCUSSION

A. Correlation, multiple linear regression,
and path analysis

The Pearson correlation coefficients in Tables 3 and 4

show the overall linear relationship between two variables.

Examination of the results shows that some variables (Mg

vs. Ca, 0.98; Table 3) are more correlated than others (Kvs.

Ca, -0.13) and some variables have a positive correlation (P

vs. yield, 0.27; Table 4) while others have a negative

correlation (OM vs. EC., -0.15). As seen in Table 3, when

soil nutrient levels increase, rice yield may not only increase

(for example, with Ca or Mg), but may decrease (for

example, with PzOs and K). This situation is due to the

interaction among variables limiting crop yield, and provides

a motivation for using path analysis to obtain more insight
about the correlation structure of the data.

Path analysis (Tables 5 and 6) gives a more detailed

understanding of the relationships among limiting factors

and their contribution to crop yield. Underlined diagonal

elements in these Tables are partial regression coefficients

from the multiple linear regression and indicate direct

effects of each predictor variable on the dependent variable

(crop yield in this case). Off-diagonal elements indicate the

indirect effects of each variable on yield acting through the

other, correlated variables.

Table 3 Correlation coefficients between variables for field I.

SPAD pH EC OM PzOs Ca K Mg Na N SiOz

pH 0.35"

EC 0.25
'

0.22

OM -0.19+ 0.08 -0.01

PzOs -0.39
"

-0.32" -0.31
"

0.07

Ca 0.58
"

0.68" 0.49
"

-0.02 -0.46
"

K -0.11 -0.07 -0.03 0.03 0.25 -0.13

Mg 0.59
"

0.69" 0.51
"

-0.02 -0.48
"

0.98" -0.14

Na 0.39
"

0.34" 0.26
'

0.02 -0.16 0.50" -0.11 0.43
"

N -0.08 0.05 -0.01 ?" 0.05 -0.05 -0.01 -0.06 -0.010.3-

SiOz 0.54" 0.59" 0.45
"

0.06 -0.39
"

0.70" 0.03 0.69" 0.57
"

0.03

Yield 0.16 0.03 0.24' -0.02 -0.14 0.19+ -0.15 0.19 0.02 -0.05 0.20+

+. '. " significant at P<O.1, 0.05, 0.01 levels, respectively.

Table 4 Correlation coefficients between variables for field 2.

pH OM P Ca Mg K CEC ECa Elev Slope

OM 0.13'

P 0.21" 0.53
"

Ca 0.39
"

0.55
"

0.51
"

Mg -0.23
"

0.48
"

0.44
"

0.62
"

K 0.05 0.60" 0.85" 0.62
"

0.64
"

CEC -0.39
"

0.47
"

0.43
"

0.65
"

0.90
"

0.65
"

EC. -0.12' -0.15
"

-0.21
"

0.03 0.16
"

-0.04 0.10
'

Elev 0.32
"

0.45
"

0.56
"

0.41
"

0.35
"

0.56" 0.24
"

-0.14
'

Slope -0.33
"

-0.18
"

-0.26
"

-0.04 0.16
"

-0.16
"

0.21
"

0.29"
"

-0.43

Yield 0.08 0.09+ 0.27
"

0.03 0.06 0.13' 0.03 -0.45
"

0.06 -0.24
"

- , "
significant at P<O.I, 0.05, 0.01 levels, respectively.
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Path analysis provided quantitativeinsightson "contribution

paths" of predictor variables to a response variable. For

example, the indirect contribution of Mg through Ca to rice

yield was positive and relatively greater (0.5I, Table 5)

while that of Ca through Mg was negative and smaller

(-0.37). Path analysis also enabled more appropriateselection

of important factors limiting crop yield by considering

cause-and-effect relationships among predictor and response

variables. For example, although the simple correlations of

Mg (r=0.06), CEC (r=O.03), and Ca (r=0.03) to com yield

were low and not significant for field 2 (Table 4), path

analysis revealed a significant direct positive contribution of

Table 5 Path analysis direct effects (diagonal, underlined) and indirect effects of limiting factors for rice yield (R2 = 0.14) and SPAD
readings (R2 = 0.46") in field I.

Independent variable ------------------------Direct and indirect contribution to dependent variables -------------------------- r

For rice vield 1ili EC Ca K Mg Na SiOo

pH -0.20 0.03 0.35 0.01 -0.26 -0.08 0.17 0.03

EC -0.04 0.15 0.25 0.01 -0.20 -0.06 0.13 0.24
'

Ca -0.13 0.07 0.52 0.02 -0.37 -0.12 0.20 0.19+

K 0.01 -0.01 -0.07 -0.18+ 0.05 0.03 0.01 -0.15

Mg -0.14 0.08 0.51 0.03 -0.38 -0.10 0.20 0.19

Na -0.07 0.04 0.26 0.02 -0.17 -0.23+ 0.17 0.02

Si02 -0.12 0.07 0.36 -0.01 -0.26 -0.13 0.29+ 0.20+

For SPAD readings 1ili EC OM P20, Mg Na SiOo

pH -0.18 -0.03 -0.01 0.04 0.34 0.03 0.17 0.35
"

EC -0.04 -0.16 0.01 0.04 0.25 0.03 0.13 0.25
'

OM -0.02 -0.00 -0.18
'

-0.01 -0.01 -0.01 0.02 -0.I9+

0.06 -0.01 -0.12 -0.23 -0.02 -0.1I -0.39
"

P20S' 0.05

0.06 0.49 0.04 0.20 0.59
"

Mg -0.12 -0.08 0.01

0.02 0.21 0.10 0.16 0.39
"Na -0.06 -0.04 -0.01

Si02 -0.II -0.07 -0.01 0.05 0.34 0.06 0.28' 0.54"

+, " " significant at P<O.I, 0.05, 0.01 levels, respectively.

Table 6 Path analysis direct effects (diagonaL underlined) and indirect effects of limiting factors on yield for field 2 (R2=O.3I').

Independent variable ---------------"-----------------Direct and indirect contribution to crop yield -----------------------------------

1ili OM f Ca Mg K CEC Elev Slope

pH 0.37
'

-0.01 0.06 -0.17 -0.07 -0.01 -0.12 0.05 -0.09 0.07 0.08

OM 0.05 -0.07 0.16 -0.24 0.14 -0.07 0.15 0.06 -0.13 0.04 0.09+

P 0.08 -0.04 0.31
"

-0.22 0.13 -0.10 0.14 0.08 -0.16 0.05 0.27
"

Ca 0.14 -0.04 0.16 -0.43' 0.18 -0.08 0.21 -0.01 -0.1 I 0.01 0.03

Mg -0.08 -0.03 0.14 -0.27 0.29
'

-0.08 0.29 -0.06 -0.10 -0.03 0.06

K 0.02 -0.04 0.26 -0.27 0.19 -0.12 0.21 0.02 -0.16 0.03 0.13
'

CEC -0.14 -0.03 0.13 -0.28 0.26 -0.08 0.32 0.04 -0.07 -0.04 0.03

ECa -0.04 0.01 -0.06 -0.01 0.05 0.01 0.03 -0.40
"

0.04 -0.06
"

-0.45

Elev 0.12 -0.03 0.17 -0.18 0.10 -0.07 0.08 0.05 -0.28
"

0.09 0.06

Slope -0.12 0.01 -0.08 0.02 0.05 0.02 0.07 -0.12 0.12 -0.20" -0.24"
+ , "

significant at P<O.I, 0.05, 0.01 levels, respectively.
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Mg (0.29, P<O.I, Table 6) and a negative contribution of Ca

(-0.43, P<O.I). A considerable indirect positive contribution

of Mg through CEC (0.29, Table 6) and a negative

contribution of Mg through Ca (-0.27) were also found.

Based on the correlation analysis alone (Table 4), increasing

the application of P and/or K would increase com yield.

With the help of path analysis, however, one might decide

that com yield would also increase with added Mg. but

would decrease with added Ca. The need for additional Mg

is consistent with mean Mg levels being below the optimum

range (Table 2). The negative Ca-yield relationship is not

because excess Ca reduces com yield. Rather, higher Ca

levels are an indication of higher clay content in the soil

since Ca is a major part of CEC. Soils with higher clay

contents have lower plant-available water holding capacity,

which could be expected to decrease com yield in dry years

such as 1997.

B. Rice Growth and Limiting Factors

From the results for the rice paddy field (Table 5), the

coefficient of determination for estimating rice yield (0.14)

was lower than that for chlorophyll content (SPAD, 0.46).

Also, the correlationcoefficientbetweenyield and chlorophyll

content was low (0.16, Table 3). This was possibly due to

heavy rain during the summer rainy season of 1999 and pest

damage before harvest. Using multiple regression with the

forward variable selection option, pH, EC, Mg, Na, and

SiOz were selected as important variables explaining both

rice yield and growth (SPAD readings), while Ca and K

were selected only for rice yield and OM and PzOs were

selected only for SPAD readings. The other variables did

not meet the significance level for entry into the model

(SLENTRY=O.5),and were not included in the path analysis

(Table 5).

Correlation analysis (Table 3) showed that EC (0.24,.

P<0.05), Ca (0.19, P<O.1) and SiOz (0.20, P<O.I) had

significant positive correlations and K (-0.15) had a negative

correlation with rice yield. For the SPAD chlorophyll

reading, Ca (0.58, P<O.OI),Mg (0.59, P<O.OI),Na (0.39,

P<O.OI) and SiOz (0.54, P<O.OI) had significant positive

correlations and PzOs (-0.39, P<O.OI) had a significant

negative correlation. Based on correlation results, Ca and

SiOz were nutrients that should be increased to improve rice
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growth and yield, commensurate with the fact that field

means were below the recommended range (Table 1).

Increases in K and PzOs would not increase rice yield, and
field means for these nutrients were above the recommended

range (Table I). The negative relationships of K and PzOs

to rice growth might be due to over-supply of the nutrients

from past field management.

Path analysis (Table 5) provided additional information

about the contribution paths of soil variables to rice yield

and growth. For example, Ca had the highest direct effect

(0.52) and indirect effect via Mg (-0.37) on rice yield. The

direct effect of SiOzon yield and the indirect effect through

Ca were 0.29 (P<O.I) and 0.36, respectively. The indirect

effect of Mg through Ca (0.51) was higher than the direct

effect (-0.38). For pH, indirect effects through Ca (0.35) and

Mg (-0.26) were higher than the direct effect. Mg and Na

were found to be important as they produced considerable

indirect effects on rice yield. Reduction of Na would be a

reasonable decision that could possibly increase rice yield

for the field since it generally sh~wed a negative indirect

effect through most of the other variables. Although an

. optimumrange for Na is not established(Table 1), lower

Na levels are generally assumed to give better yields in

Korean rice production.

Most measured variables were significantly correlated

with SPAD chlorophyll reading, in the following order: Mg

(0.59, P<O.OI), SiOz (0.54, P<O.OI),PzOs (-0.39, P<O.OI),

Na (0.39, P<O.OI)and pH (0.35, P<O.OI).Three variables,

pH, EC, and SiOz exhibited indirect effects of 0.34, 0.25

and 0.34 through Mg to SPAD readings, respectively.

Although pH showed a positive correlation (r=0.35, P<O.OI)

with SPAD readings, it should be noted (1) that.the overall

relationship was mainly due to the indirect positive effects

acting through Mg and SiOz, and (2) that pH not only

showed negative direct effects, but also negatively affects

indirect effects of other variables on SPAD readings. There-

fore, an increase in pH might not be a reasonable option for

increasing rice growth on this field, where mean pH was

only slightly below the optimum range (Table I). This is an

example where path analysis provided additional information

that could lead to a different management decision than the

more conventional correlation analysis.



C. ComparingSmallRice PaddyField and
Large Upland Corn Field

Factors limiting crop growth and yield may be different

for different fields due to reasons such as soils, crop variety,

weather, and field management history. The rice paddy field

(field I) was small in size (0.3 ha), flat, and mostly flooded

. by irrigationand heavy rain. Therefore,the amount and

direction of water flow had a large effect on nutrient

distribution (Chung et aI., 2000). EC, Ca, and Si02 showed

significant correlations with both rice growth and yield for

field I (Table 3). Topographic variables such as elevation

and/or slope play considerable roles in the large (36 ha)

upland field (field 2). P, K. ECa,and slope showed significant

correlations with com yield for field 2 (Table 4). Although

correlation coefficients for elevation and slope were rela-

tively low, they have significant direct effects (P<O.OI,

Table 6) on com yield and significant correlations (P<O.OI,

Table 4) with many other limiting factors.

Site variables behaved differently in the two fields.

Between. the fields, direct contributions were of opposite

sign for pH, Mg, and Ca, while they were of the same sign

for K. For example, pH had a negative direct contribution

to rice yield in field I but a positive direct contribution to

com yield in field 2. The coefficient of determination for

com yield was greater than that for rice yield. These

phenomena, however, were based only on one site-year of

data. To generalize these results, data for multiple years

should be investigated. Also, knowledge of other factors

such as climatic conditions, previous crop history, and pest

damage .would be needed to establish a more complete

model of yield response to limiting factors.

D. Potential for Use of Path Analysis in
Precision Agriculture

Although this study considered a number of variables, the

regressions developed were not highly predictive. From this

we can infer that there are many other yield-limiting factors

not included in the study. Those factors may include other

soil and plant parameters, management factors, pest infor-

mation, and climatic conditions. Prediction of crop yield

could be improved using nonlinear regression techniques.

Previous work (e.g., Drummond et aI., 2003; Sudduth et aI.,

J. of Biosystems Eng. Vol. 30, No.1.

1996)using similar data sets from field 2 showed that

nonlinear techniques such as neural networks (NN) and

projection pursuit regression (PPR) produced higher coeffi-

cients of determination and lower errors of prediction. For

1993 com yield, coefficient of determination and standard

error of prediction (SEP) were 0.13 and 0.65 Mglha with a

stepwise multiple linear regression (SMLR), and were 0.51

and 0.48 Mgiha with a PPR (Sudduth et aI., 1996). For

1997 com yield, the same data used in this paper, the

coefficient of determination and SEP were 0.31 and 0.71

Mgiha using a forward variable selection option in this

study, while SEP values were 0.84, 0.70, and 0.69 Mgiha

with SMLR, PPR, and NN methods, respectively, in a

previous study (Drummond et aI., 2003). The PPR and NN

approaches focus on yield prediction and use the concept of

a transformed or "latent variable". Therefore understanding

the contributionsof the original variablesand interrelationships

among them is difficult. Also these methods require a

significantly greater number of observations than do linear
methods.

Another reason for poor predictive performance in this

study might be nonlinearity of response curves and nonlinear

interrelationships among predictor variables. While path

analysis based on correlation analysis and partial linear

regression enables us to obtain insight into the correlation

structure by partitioning the overall relationship into direct

and indirect effects, it assumes linear effects of the limiting

factors on crop yield.

Solving these problems may require the use of nonlinear

response functions. Nutrient response curves described by

Tisdale et al. (I999) and/or the boundary line approach

demonstrated by Kitchen et al. (1999) may be used to

transform nonlinear data into data linearly related to crop

yield. To help understand the results of path analysis, other

methods such as principal component analysis (PCA) could

be used. PCA generates new decorrelated data sets (principal

components, PCs) from the original correlated data sets by

grouping the most highly correlated variables. Examination

of the PCs may also provide some information on interre-

lationships among the original data sets (e.g., Chung et aI.,

2001).
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4. CONCLUSIONS

Path analysis was applied to investigate yield-limiting

factors and their interactions with one another for two

research sites, a small rice paddy field in Korea and a large

upland com field in Missouri, USA. The results provided

more information on the direct and indirect effects of

limiting factors on crop yield than commonly used methods

such as correlation analysis and multiple linear regression.

In general, results agreed with published optimum ranges of

nutrients for rice and com production.

From correlation analysis of the rice field data, EC, Ca,

and Si02 had significant correlations with rice yield, while

pH, Ca, Mg, Na, Si02, and P20Shad significant correlations

with the SPAD chlorophyll reading. Path analysis provided

additional information about the importance and contribution

paths of soil variables to rice yield and growth. Path analysis

also enabled more appropriate selection of important factors

limiting crop yield by considering cause-and-effectrelation-

ships among predictor and response variables. For example,

although pH showed a positive correlation (r=0.35) with

SPAD readings, the correlation was mainly due to the

indirect positive effects acting through Mg and Si02. The

direct effects of pH on SPAD were negative, so an increase

in pH might not increase rice growth.

Overall, the coefficient of determination for rice yield

(0.14) was lower than that for SPAD chlorophyll reading

(0.46), and the correlation coefficient between yield and

SPAD reading was low (0.16). This was attributed to heavy

rain during the summer rainy season and pest damage

before harvest. Therefore, other factors such as climatic

conditions and pest damage would be needed to establish a

more complete model of yield response to limiting factors.

For the large upland Missouri com field, topographic

factors including elevation and slope had significant direct

effects (P<O.I) on yield and highly significant correlations

(P<O.OI) with other limiting factors. Based on correlation

analysis, increases in P and K would increase com yield.

With the help of path analysis, increased Mg levels were

also indicated for improving com yield

Path analysis assumes a linear relationship of limiting

factors to crop yield response, but the true relationships are
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non-linear in most cases. Results of path analysis could be

improved if the non-linear responses were linearized using

tools such as the boundary line method and/or general

nutrient response models.
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