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1. Introduction

Crop yield is a function of complex interactions of

biotic and abiotic factors, including crop management

(e.g., fertility, variety, and seeding rate), soil and field

characteristics (e.g., drainage, topography, and soil water

holding capacity), and weather conditions (e.g.,

temperature, precipitation, and light use efficiency).

Understanding the relationship of crop yield to other

spatial factors is needed to develop appropriate site-
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specific crop management (SSCM) systems. Crop

production varies not only spatially but also temporally.

High-producing areas of a field during “dry” years can

be low-producing areas in “wet” years (Colvin et al.,

1997; Wang et al., 2003).

Crop modeling has been applied at various scales in

agriculture, from precision farming, to farm planning, to

watershed or regional policy development. CROPGRO-

Soybean (Hoogenboom et al., 1994) and CERES-Maize

(Jones and Kiniry, 1986) are process-oriented models

that compute growth, development, and yield on

homogeneous units from field to regional scales.

Although crop modeling is a promising tool for

simulating yield and yield-limiting factors, a large

amount of input data is necessary to accurately predict

spatial variations, and the cost for measuring dense

spatial data sets is high. To quantify in-field spatial

variations using crop models, reliable and cost-effective

techniques must be developed to parameterize crop

models across a field with high spatial resolution.

Remote sensing technologies for precision agriculture

are used to detect and quantify various field conditions

including crops, soils, water, and climate for immediate

and future management decisions. Functional relations

have been developed between remote spectral

observations and crop characteristics such as above-

ground net production (ANP) (Hong et al., 1997), yield,

fractional photosynthetically active radiation (FPAR),

leaf area index (LAI) (Wiegand et al., 1991; Thenkabail

et al., 2000), shoot population (Wood et al., 2003), and

soil properties including soil texture and fertility

(Thomasson et al., 2001; Hong et al., 2001).

Vegetation indices (VI) are dimensionless,

radiometric measures that function as indicators of

relative abundance and activity of green vegetation. A

vegetation index should maximize sensitivity to plant

biophysical parameters, normalize or model external

effects such as sun angle, viewing angle, and the

atmosphere, and normalize internal effects such as

canopy background variations. In spectral signature

analysis by remote sensing, vegetation indices that

combine red and near-infrared bands are widely used for

estimating the vitality and the productivity of vegetation.

The cellular structure of leaf mesophyll strongly scatters

and reflects near-infrared energy. In the visible region,

vegetation looks dark on the imagery because of the

high absorption of pigments such as chlorophylls and

xanthophylls. Although these physical bases explain

their function, vegetation indices are generally based on

empirical evidence, not on basic biology, chemistry or

physics.

Leaf area index (LAI) was first introduced by Watson

(1947) and defined as the ratio of leaf area to a given

unit of land area, a ratio that is functionally linked to

spectral reflectance. LAI is important in explaining the

ability of the crop to intercept solar energy and in

understanding the impact of crop management practices.

Many have attempted to develop relationships between

vegetation indices and LAI and have discussed their

potential and limitations (Baret and Guyot, 1991;

Wiegand et al., 1991; Thenkabail et al., 2000).

A number of attempts have been made to link remote

sensing data to crop simulation models as direct inputs

or for minimizing differences between predicted and

measured values. Data used for model linkage have

included 20- to 30-m resolution multispectral images

(Wiegand et al., 1986; Maas, 1988; Moulin et al., 1998)

for large-area crop condition assessment, and remotely-

sensed canopy temperature for canopy transpiration

(Inoue, 2001). In spite of the various studies conducted

on integrating models and remote sensing data, spatial

scale issues and integration methodologies are still

uncertain and require further investigation.

The objective of this study was to estimate leaf area

index (LAI) as a function of image-derived vegetation

indices, and to compare measured and estimated LAI to

the results of crop model simulation.
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2. Spatial Data Collection, Modeling,
and Image Analysis

1) Study Sites

Data were collected on two fields (Field A, 36 ha and

Field B, 13 ha) located within 3 km of each other near

Centralia, in central Missouri (39.2 N, 92.1 W), USA.

The soils found at these sites are characterized as

claypan soils (fine, montmorillonotic, mesic, Udollic

Ocharaqualfs, and Albaquic Hapludalfs). These soils are

poorly drained and have a restrictive, high-clay layer

(the claypan) occurring below the topsoil. Because of

extensive weathering, the claypan soil is usually low in

natural fertility and pH. Plant available water from the

claypan soil is low because a large portion of the stored

water is retained with the clay at the wilting point.

Mapped data available for field characterization

included a detailed, first-order soil survey, topographic

maps, topsoil depth, and historical grain yield. Based on

previous work (Doolittle et al., 1994; Kitchen et al.,

1999), topsoil thickness above the claypan was

estimated from soil electrical conductivity measured

using a commercial electromagnetic induction sensor.

Yield maps were available for the years beginning in

1993 (Field A) or 1996 (Field B). The selection of

within-field monitoring sites for this study was based on

this existing topography, topsoil depth, and historic yield

information (Fraisse et al., 2001). Topsoil depth and

landscape position influence water holding capacity and

water flow within the fields, having a direct impact on

crop yield. The main goal was to select enough sites to

adequately characterize the yield variability measured in

the fields. Seven monitoring sites in Field A (Sites 101-

107) and five in Field B (Sites 201-205) were selected to

represent the range of variability present in the fields.

Two monitoring sites, one in Field A (102) and the other

in Field B (203), were located in depositional areas and

were problematic in “wet” years due to surface and

subsurface run-on from the upper parts of the fields.

These areas generally exhibited above average yields in

“dry” years, and, mainly due to reductions in stand, low

yields in “wet” years.

Data for this study were collected in 2001. Field A

was planted to corn on April 28 (76 cm row spacing,

63,000 seeds/ha) and Field B was planted to soybean on

June 18 (19 cm row spacing, 490,000 seeds/ha). Field A

was managed with minimum tillage, while Field B was

managed with no-tillage. Harvest was on September 20

for Field A and October 17 for Field B.

2) Experimental Measurements

Neutron access tubes were installed at each site in the

two fields for root zone soil moisture monitoring during

the growing season. Soil moisture readings by neutron

probe were made to determine the soil water content

every other week at selected depths (15-, 30-, 45-, 60-,

80-, 100-, and 120-cm). Weather data needed for crop

modeling, including solar radiation, maximum and

minimum daily air temperature, and precipitation, were

collected by an automated weather station located at

Field A. A second rain gage was installed at Field B,

providing precipitation data specific to each field.

A hydraulic core sampler was used for soil sampling

at each site for both fields in November 1999. Cores

were subsampled by horizon for bulk density and soil

texture analysis. Bulk density was measured by the core

method and soil textural composition was analyzed

using the pipet method. The drained lower and upper

limits were estimated using the Leaching Estimation and

Chemistry describing water regime (LEACHW) model

(Rawls and Brakensiek, 1985) available in SOILPAR

(Soil Parameter Estimator) v1.0 (Donatelli et al., 1996).

The remaining soil properties used as input parameters

for the crop growth models were taken from United

States Department of Agriculture Natural Resources

Conservation Service (USDA-NRCS) first order soil

surveys conducted on Field A in 1997 and on Field B in
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2000.

Destructive crop sampling for LAI and dry weight was

carried out with a 1-m row section for corn (76-cm row

spacing) and three 1-meter row sections for soybean (19-

cm row spacing). Corn measurements were obtained on

day of year (DOY) 177, 199, 218, and 240, while soybean

measurements were obtained on DOY 211 and 229. Leaf

area was measured with a LI-COR1) leaf area meter (LI-

3100), where the projected image of a leaf sample

traveling under a fluorescent light source is reflected by a

system of mirrors to a solid-state scanning camera.

Hatfield et al. (1976) reported that measurement error

with this type of area meter is generally less than 2 %.

3) Crop Growth Models

The CERES-Maize and CROGRO-Soybean models

included in the Decision Support System for

Agrotechnology Transfer (DSSAT) v.3.5 software

package (Hoogenboom et al., 1994) were used to

simulate crop growth. Both models are mechanistic

process-based models that predict daily photosynthesis,

growth, and partitioning in response to daily weather

inputs, soil traits, crop management, and genetic traits.

Fraisse et al. (2001) and Wang et al. (2003) evaluated

the CERES-Maize and CROPGRO-soybean models for

simulating site-specific crop development and yield on

Missouri claypan soils.

Matthews and Blackmore (1997) suggested a

framework for analyzing the factors causing spatial

variation in crop yields following a hierarchical system

of production levels: 1) potential production; 2) water-

limited production; 3) nutrient-limited production; 4)

production limited by weeds, pests, and diseases. Our

study limited crop modeling to the second production

level, in which weather data and soil water characteristics

were used as the main input state variables.

4) Image Processing and Analysis

Airborne and IKONOS satellite images were

acquired several times both for Field A and Field B

during the 2001 cropping season as exampled in Table

1. The aerial hyperspectral images were collected using

a pushbroom prism-grating scanner (RDACSH3; Real

Time Digital Airborne Camera System H3) operated by

Spectral Visions Midwest that included 120 bands from

471 nm to 828 nm (3-nm interval) with a spatial

resolution of 1 m (Mao, 2000). The aerial multispectral

sensor (RDACS; 1 to 1.3-m spatial resolution) included

green (520-600 nm), red (630-690nm), and near-infrared

(NIR; 760-790 nm) bands. The satellite multispectral

sensor (IKONOS; 4-m spatial resolution) provided data

in the same green, red, and NIR wavelength ranges.

Geometric distortion was observed in many airborne
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Table 1.  Image acquisition information, 2001.

Sensor Spatial Resolution(m) Acquisition Date

Field A Field B Day of Year

Airborne hyperspectral 1 June 15 166
IKONOS multispectral 4 July 5 July 5 186
Airborne multispectral 1.3 July 15 July 15 196
Airborne multispectral 1 Aug. 6 218
IKONOS multispectral 4 Aug. 7 219
IKONOS multispectral 4 Aug. 29 Aug. 29 241
Airborne hyperspectral 1 Sep. 5 Sep. 5 248

Sensor
Spatial Acquisition Date

Resolution(m) Field A Field B Day of Year

1) Mention of trade names or commercial products is solely
for the purpose of providing specific information and
does not imply recommendation or endorsement by the
authors or their organizations.



images, probably due to aircraft attitude change during

image acquisition. We applied a rubber sheeting model

using piecewise polynomials for image rectification

(Hong et al., 2001). Data used for geo-referencing

included accurate surveyed field boundary vector data,

six ground control points per field, and a resolution-

merged IKONOS image with a spatial resolution of 1 m.

For radiometric calibration of airborne images,

chemically-treated reference tarps were used. These

tarps included eight known reflectance levels from 2%

to 88%, a range wide enough to represent all field

surface reflection conditions. The tarps were placed at

Field A during flights and reflectance data were

retrieved from the images using linear regression

models. The same regression models were used to

convert digital numbers to reflectance for Field B

images. The airborne multispectral image taken on July

15 did not have tarps and was used for data analysis

without radiometric calibration. IKONOS imagery was

radiometrically corrected by the image provider to adjust

brightness and contrast to compensate for sensor

sensitivity changes.

The areas for extracting VIs from the images were

selected coincident with the hand-harvested areas for

modeling (5m by 5m) with the assumption that crop

samples obtained for model LAI estimation represented

crop growth in the monitoring areas. The indices used

for deriving image-based LAI values were NDVI

(Normalized Difference Vegetation Index=(lNIR-lR)/

(lNIR+lR); Rouse et al., 1973), RVI (Ratio Vegetation

Index=lNIR/lR; Jordan, 1969), and SAVI (Soil Adjusted

Vegetation Index=(lNIR-lR)/(lNIR+lR+L)×(1+L);

Huete, 1988). To calculate VIs from hyperspectral

images, the wavelengths selected were 681 nm for red,

and 786 nm for NIR. These were selected based on

spectral characteristics, pigment absorption, and our

previous research (Hong et al., 2001). Before extracting

data for VI calculation, the MNF (Minimum Noise

Fraction) transformation (Green et al., 1988) was used

to reduce random noise. The MNF transformation is a

two-step principal component transformation in which

the noise is decorrelated during the first step using the

noise covariance matrix to provide unit variance and no

band-to-band correlation. Then the second principal

component transformation results in a data set where

components are ranked in terms of noise equivalent

radiance.

3. Results and Discussions

1) Leaf Area Index Estimation Using
Remote Sensing

Image-derived NDVI was compared with observed

LAI both for corn in Field A and for soybean in Field B

(Figs. 1 and 2). In both corn and soybean, NDVI and

LAI exhibited generally similar trends through the

growing season. In corn, good relationships between

NDVI and measured LAI were obtained for sites 101,

103, and 106 (Fig 1.) where a fully developed canopy

was detected on the imagery. There was somewhat

poorer agreement at site 102, where a significant amount

of soil background was present in the image data as a

result of a poor stand caused by surface runoff early in

the growing season. Similarly, agreement was lower due

to soil background at site 104, where problems with

cultural operations during the season reduced stands. A

decrease in NDVI was observed from day of year

(DOY) 186 to 196 at each monitoring site. This was

likely because the DOY 196 image was not

radiometrically corrected, since tarps were not deployed

on that date. NDVI was highest in the image taken on

August 6 (DOY 218) and then dropped sharply for corn

at all monitoring sites. More frequent image acquisition

or field remote sensing with a handheld radiometer

would be needed to more accurately determine the

NDVI peak. Three dates of Landsat TM-derived NDVI
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Fig. 1.  Image-derived NDVI(▲) and LAI(○) of corn as a function of day of year for monitoring points 101-107 in Field A.
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were compared with observed LAI and also exhibited

good agreement for corn (data not shown). Regressions

(Fig. 3) were developed to relate measured corn LAI to

image-derived vegetation indices (NDVI, RVI, and

SAVI) over the period of increasing LAI data (DOY

177 to 218).

Fig. 2 shows NDVI and measured LAI of soybean as a

function of time for Field B. This no-till field was covered

with crop residues and weeds at planting, although weeds

were controlled by herbicide application six days prior to

planting. NDVIs at all monitoring sites were similar, and

ranged from 0.11 at DOY 186 to 0.88 at DOY 248. Up

until about 20 days after flowering (R4 to R5, DOY 248),

NDVIs in the monitoring sites were increasing. We

assumed this occurred because soybean vegetative growth

continued until approximately one month after flowering

started, when maximum canopy stage was attained (Hong

et al., 2001), resulting in high NDVI values. Confirmation
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Fig. 2.  Image-derived NDVI(▲) and LAI(○) of soybean as a function of day of year for monitoring points 201-205 in Field B.
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of this assumption would require images to be obtained

after maturation stage for estimating the peak VI. Soybean

LAI was estimated from NDVI, RVI, and SAVI for the

period from DOY 211 to 229, when observed LAI data

were available (Fig. 3).

The best regressions relating LAI to VI were linear,

with the exception of LAI versus RVI for corn, where a

quadratic relationship provided a better fit. However, the

LAI-RVI relationship for corn could be well-

approximated by a linear equation for RVI values less

than 5. Based on a comparison of r2, there was very little

difference in the quality of LAI estimations from various

VIs (Fig. 3). Overall, NDVI estimates were slightly

better across both crops, so NDVI-estimated LAI was

used for comparison with model-simulated LAI.

2) Crop Simulation

The study fields received near-normal precipitation
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Fig. 3.  LAI as a function of image-derived NDVI, RVI, and SAVI; a)for corn using data from June 26 to August 6, and b) for
soybean using data from July 30 to August 17.
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during the 2001 growing season. However, excess rain

in the early spring caused ponding of water in

depressional areas of Field A and excessive runoff in

highly sloping areas. Within-field variation was high

because of wet conditions and black cutworm pressure

during the germination and emergence stages which
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Fig. 4.  Simulated(-), observed(○), and NDVI-estimated(▲) LAI for seven corn monitoring sites in Field A.
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reduced corn stands in some locations. Crop simulation

at site 102 was difficult due to poor stands caused by a

wet early spring, a phenomenon also reported in

previous years for this field (Fraisse et al., 2001).

The CERES-Maize model was calibrated against

measured soil moisture data (6 observations) and grain

yield, and the simulated changes in LAI over the

growing season were examined. LAI was significantly

overestimated by the model at all monitoring sites (Fig.

4). Compared to results for the other sites, model-

simulated LAI was low throughout the growing season

for Sites 102 and 104, reflecting the poorer plant stand

observed at these sites. These two locations also

exhibited the lowest peak NDVI measurements of all

sites. Sites 106 and 107 had the highest simulated peak

LAI (Fig. 4) and NDVI values (Fig. 1). Thus, similar

among-site trends were seen in both model-simulated

LAI and in NDVI. However, LAI overestimation by the

model, and the site-to-site variability in model fit,

demonstrated two main challenges presented to

modelers when simulating site-specific crop growth: 1)

lack of knowledge to define specific genetic coefficients
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Fig. 5.  Simulated(-), observed(○), and NDVI-estimated(▲) LAI for five soybean monitoring sites in Field B.
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for the cultivar being simulated, and 2) lack of ability to

deal with yield-limiting factors not taken into account by

the model such as pests (e.g., black cutworm) and lateral

water flow.

Soybean growing conditions were good at planting

and during the maturing phases, generating good yield

across the field. Fig. 5 shows the comparison between

LAI simulated by the calibrated CROPGRO model,

NDVI-estimated LAI, and observed LAI for the

monitoring sites. Sites 202 and 203 showed good

agreement between simulated, estimated and observed

LAI. The highest yield was obtained in site 203, where

topsoil is deeper and high yield has been observed in dry

years. LAI was over-predicted by the model at sites 204

and 205 and under-predicted at site 201. However, the

agreement among model-simulated, observed, and

image-estimated LAI was much better for soybean than

it was for corn.

3) Combining Remotely Sensed Data and
Crop Models

The results of this study suggest that remotely sensed

data might be useful to augment, and improve the results

of, crop growth models. Although remote sensing can

provide estimates of agronomic variables such as LAI

with frequent observations at a fine spatial resolution

over a whole field, remotely sensed data only gives an

indirect indication of potential causes for the effects of

any observed variability. Crop growth models can

provide a more direct decision support system for

explaining yield-limiting factors. Integration of crop

growth models with remotely sensed information has

been accomplished in several ways. According to

Moulin et al. (1998), remote sensing observations can

help extend the application of crop models to a regional

scale by accounting for spatial variations of

environmental conditions that affect crop growth and

development without tedious ground surveys. They

reviewed coupling methods for crop models and satellite

data including: i) the forcing strategy that consists of

updating at least one state variable using remote sensing

data, ii) the re-initialization/re-parameterization

approach, which consists of redefining model

parameters or initial conditions to minimize the

difference between a derived state variable or

radiometric signal and its simulated value as determined

by the crop model. Use of the forcing strategy for

combining models and remote sensing data was

evaluated by Barnes et al. (1997). They modified the

CERES-Wheat model to accept remote sensing-derived

LAI as an input variable and concluded that the

approach would require further improvements in order

to produce more accurate results. Basso et al. (2001)

modified the CROPGRO-Soybean model to accept

plant population and soil type as model inputs. Future

work in this project should investigate the coupling of

crop growth models and remotely sensed data for

improved estimations of site-specific variation in crop

growth and yield.

4. Conclusions

Image-derived vegetation indices and crop models

were used to estimate and simulate LAI, and data were

compared with measured LAI data for both corn and

soybean. Over the growing season, the general trend in

NDVI was similar to that in LAI. Measured LAI was

expressed as a function of image-derived vegetation

indices such as NDVI, RVI, and SAVI using LAI and

image data taken from June 26 to August 6 for corn and

from July 30 to August 17 for soybean. The quality of

the LAI estimation was similar with all indices, and was

likely reduced because the dataset included multiple

sensors with different levels of radiometric calibration,

different platforms, different spatial resolutions, and that

encountered different amounts of atmosphere (i.e.

airborne vs. satellite). Results might be improved by
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using data from a single image provider, but that

approach did not provide adequate temporal coverage

for this study.

The CERES-Maize model was calibrated against

measured soil moisture, LAI, and grain yield and over-

predicted LAI in all monitoring sites. We assumed this

was due to other yield-limiting factors that were not

taken into account by the model, such as pests (i.e. black

cutworm) and the impacts of early-season surface runoff

on crop stand. The CROPGRO-Soybean model was

well-calibrated against measured soil moisture, LAI, and

grain yield. Generally good agreement was found

between simulated and observed LAI in soybean, which

had less variability in crop stand than did the corn. We

suggest that remote sensing estimates of the spatial

variability in LAI could be coupled with crop growth

models for explaining yield variability within a field.
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