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ABSTRACT

Multivariate calibration methods, including stepwise
multiple linear regression, principal components
regression, and partial least squares regression, were
applied to soil color and spectral reflectance data to predict
the organic matter content of Illinois soils. Data were
obtained with a visible/near infrared (NIR) spectro-
photometer and a commercial colorimeter on a calibration
set consisting of 30 Illinois mineral soils at 0.033 MPa and
1.5 MPa moisture tension levels. Good correlation with soil
organic matter (12 = 0.91, standard error of prediction =
0.34% organic matter) was obtained when using as few as
12 NIR reflectance data points in the range from 1720 to
2380 nm. Color coordinate and visible reflectance data
provided considerably poorer predictions of soil organic
matter content. KEYWORDS. Herbicides, Color, Near
infrared, Colorimeter, Spectrophotometry, Multivariate
calibration.
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on the cation exchange complex of the organic matter.
Meggitt (1970) reported on an experiment in which a linear
increase in herbicide dose was required to maintain weed
control as organic matter increased up to 15%, when using
s-triazines, thiocarbamates, and pyridazinones. Gradual
variations in organic carbon as high as 2:1 have been seen
within an 80 m transect in a flat, apparently uniform field
in Central Illinois (Sudduth, 1989); larger variations might
be expected in areas with more variable topography or over
longer distances. With this level of variability, significant
opportunity exists. for cost savings and input optimization
of soil-applied herbicides based on soil organic matter
content.

It is well known that soils of higher organic matter
content are generally less reflective, or darker in color, than
those soils with lower organic matter contents. Several
reflectance and color based methods of predicting organic
matter are evaluated in this article with respect to a

representative set of Illinois agricultural soils.

INTRODUCTION
(::ropping system management is generally practiced
on a field basis, with herbicides, as well as other
inputs such as fertilizer and seed, applied at a
uniform rate over the entire field. Actual needs for
herbicide inputs can commonly vary by a factor of two or
more over the field so that a uniform rate based on the
spatially-averaged requirements is too high for some areas
and too low for others. Over-application results in
increased production costs and may also cause
environmental damage due to excess chemical
contaminating surface water or groundwater. Under-
application can result in decreased yields due to poor
control of pests. Ideally, application rates should be
adjusted to meet the requirements for each part of the field.
With many soil-applied herbicides, the application rate
required for effective weed control increases as soil organic
matter content increases, due to adsorption of the herbicide
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LITERATURE REVIEW

Many researchers have correlated soil color properties
with organic matter or organic carbon content.* The color
properties used have included the Munsell coordinates of
hue, value, and chroma; and coordinates from several of
the Commission International de I’Eclairage (CIE) color
spaces (Billmeyer and Saltzman, 1981). In general,
attempts to extract a single relationship for soils from a
wide geographic range have yielded poor correlations
(Mc Keague et al., 1971; Karmanov and Rozhkov, 1972).

Studies focused on soils from a single state or other
limited geographic areas have been more successful.
Alexander (1969) correlated soil color with the organic
matter content of over 300 Illinois soils and created a color
chart which could be used for field classification of a moist
soil into one of five overlapping organic matter ranges.
Alexander reported that an experienced technician could
determine organic matter content within the correct range
more than 95% of the time.

Page (1974) used a commercially available color-
difference meter to estimate the organic matter
concentration in air dry surface samples of 96 Atlantic
Coastal Plain soils. Organic matter content was estimated
within £0.50% of the actual value for 75% of the soils
tested (r2 = 0.79). Steinhardt and Franzmeier (1979)

*In the context of this manuscript, the terms organic matter and
organic carbon can be used interchangeably; soil organic matter content is
defined as 1.72 times the organic carbon content.
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correlated Munsell value and chroma and organic matter
content for surface horizon samples of plowed silt loam
soils in Indiana. A 90% accuracy rate was reported when
classifying 219 soil samples into one of three categories —
less than 3% organic matter, 3 to 5%, and over 5% .

Fernandez et al. (1988) correlated Munsell color and
organic matter within a given soil landscape, hypothesizing
that there would be a closer relationship than those
previously reported for wider geographic areas. Samples
collected from three soil series in each of two landscapes
yielded high correlations between soil organic matter and
Munsell value (moist soil r2 = 0.92, dry soil r2 = 0.94).
Different calibrations were required at the two moisture
levels, and the calibrations developed were applicable only
within the landscapes studied, containing only silt loam
and silty clay loam soils.

Reflectance measurement has been used extensively to
estimate soil organic matter content. Two particular
spectral regions have been utilized — the visible region,
from 380 to 780 nm, and the near infrared (NIR) region,
from the upper boundary of the visible region to about
3000 nm. Schreier (1977) found that the longer visible
wavelengths had the highest predictive capability, with a
maximum r2 of 0.67 obtained at 600 nm. Obukhov and
Orlov (1964) selected the 750 nm region, while
Vinogradov (1981) reported the best correlations in the red
range of 640 to 720 nm. Dalal and Henry (1986) used near
infrared (NIR) reflectance to predict the organic carbon
content (r2 = 0.86) of selected Australian soils
simultaneously with moisture and total nitrogen
determination. ;

Baumgardner et al. (1970) correlated spectral
reflectance in the 620 to 666 nm band with organic matter
for 197 surface soil samples with organic matter contents
from 0.7 to 6.3% . Two separate linear relationships, one
below and one above 4% organic matter, best described the
data. Stoner (1979) correlated average reflectance in
100 nm and wider spectral bands with organic carbon for
481 soils collected from across the continental U.S. They
obtained an r2 of 0.46 when considering all soils, and a
maximum r2 of 0.66 when analyzing correlations
separately by climatic zone.

Krishnan et al. (1980) correlated reflectance character-
istics in the 400 to 2400 nm range and organic matter
content for ten Illinois soils at four moisture levels. Better
correlations were obtained with information from the
visible range (400 to 780 nm) than with NIR data (780 to
2400 nm). A first derivative model using optical density
data yielded an r2 of 0.85 with the calibration dataset.
Other researchers (Pitts et al., 1986) could not obtain
satisfactory correlations when using this model with an
expanded set of soils. Pitts et al. (1986) successfully
predicted organic matter contents of 30 Illinois soils using
an exclusion algorithm and polychromatic (white), green,
and red reflected light. The width of the prediction range
for each soil varied from 1 to 3% organic matter, w1th an
average range width of 1.4%.

Griffis (1985) developed and tested a soil carbon sensor
which yielded an r2 of 0.75 for a set of 18 air dry Arkansas
soils. Shonk and Gaultney (1988) developed a real-time
soil organic matter sensor intended to be recalibrated for
each new soil landscape, rather than for the larger
geographic area (such as an entire state) attempted by other
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researchers. Laboratory tests yielded good correlations
(r2 = 0.80 to r2 = 0.98) within a single landscape at a
single moisture content. Field tests showed a curvilinear
relationship between sensor output and organic matter,
with independent calibrations needed for variations in
travel speed or sensing depth.

Prediction of organic matter content from color or
reflectance data requires the application of multivariate
calibration techniques. The relationship between the
dependent variable (organic matter content) and several
independent variables (color coordinates or reflectance at
various wavelengths) must be estimated over a number of
samples (soils) in such a way as to be able to predict the
value of the dependent variable for future samples. Several
approaches can be used (Martens et al., 1983):

Multiple linear regression (MLR) is the simplest method
to use. It is applicable in situations when there are many
more samples than independent variables and when the
independent variables have low noise and low inter-
correlation.

Stepwise multiple linear regression (SMLR) can be used
with sets of independent variables that are highly
correlated. A search algorithm is used to find the subset of
independent variables that provides the best description of
the dependent variable. If there are few samples, SMLR
may cause overfitting of the data, and the ability to predict
to other than the calibration samples may be lost. Hruschka
(1987) suggested that a minimum of ten samples were
required for each estimated regression constant and for
each varied parameter (such as wavelength).

Principal component regression (PCR) is an example of
a latent variables regression method (Martens and Naes,
1987). Latent variables methods reduce the set of collinear
independent variables to a smaller set of orthogonal
components which represents most of the variability in the
original data and contains a reduced amount of random
measurement noise. The optimum number of components
to use in the analysis can be found by the method of cross-
validation. PCR consists of first reducing the
dimensionality of the data by the use of principal
components analysis (PCA), and then independently
performing an MLR to relate the PCA factors to the
dependent variable. PCA was first applied to soil spectral
reflectance analysis by Condit (1970).

Partial least squares regression (PLS), another latent
variables method, is similar to PCR but the components
extracted from the data are a function of the values of both
the independent and the dependent variables. The two steps
of reduction in data dimensionality and regression are
performed simultaneously so that small but relevant
differences that might be ignored in a PCR are included in
the solution. Since PLS components are selected to
maximize both description of the independent variables
and correlation to the dependent variables, the relevant
predictive information tends to be concentrated in fewer
components, making this method more efficient than PCR
(Martens and Naes, 1987). Martens et al. (1983) stated that
PLS should yield better results than other methods when
the number of samples is low and/or when the calibration
data is noisy. For an algorithmic description of the PCR
and PLS techniques, the reader is referred to Martens and
Naes (1987).
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OBJECTIVE _

The objective of this study was to select the optimum
combination of wavelength range, data type, and
calibration method for prediction of soil organic matter
content from color coordinate or visible/NIR spectral
reflectance data. If adequate predictive capability was
obtained using color coordinates (or the related
fundamental metamer representation), a tristimulus
colorimeter could be used as a simple, relatively
inexpensive sensor. Otherwise, a spectrophotometer or
similar instrument would be needed to obtain reflectance
data at points along the spectral curve.

PROCEDURE

Thirty Illinois mineral soils, selected as representative
of the state’s important agricultural soils, formed the
calibration dataset used in this study (Table 1). The set
included 10 soils initially used by Krishnan et al. (1980)
and another 20 soils used in later studies by Pitts et al.
(1986), Worner (1989), and Smith et al. (1987). The soil
samples were prepared for analysis by removal of foreign
material and crushing to pass through a 2 mm square mesh
sieve.

SoIL PROPERTY DETERMINATION
Visible and NIR reflectance curves for the 30 test soils

TABLE 1. Organic carbon contents and physical characteristics of the 30 Illinois soils used in the study

Soil Texture Gravimetric Moisture
Dy  Walkley
Combustion Black
Organic Organic [ Air 15 0.033

Soil Name and D Carbon Matter Sand Silt Clay Dry MPa MPa
Textural Class* Number (%) (%) (%) (%) (%) % (%) (%)
Loamy Sand

Ade ‘ 1 045 0.67 86.5 73 62 048 1.56 4.19

Plainfield 2 059 1.05 83.7 127 36 0.68 L1 6.14

Sparta 3 0.69 1.73 854 104 42 0.70 141 6.2

Maumee 4 1.04 154 84.1 76 83 1.02 212 6.15
Sandy Loam

Carmi 5 1.14 185 672 217 111 144 394 9.68
Loam

Ambraw 6 126 225 48.0 292 20 219 8.74 1547

Tice : 11 099 133 258 500 242 227 841 2045
Qay

Jacob 7 201 295 38 336 62.6 755 2443 3685
Clay Loam )

Proctor 8 0.82 148 256 47.1 213 219 7.66 19.19

Darwin 9 135 213 45 339 316 273 1097 2067
Silt Loam

Wynoose 10 0.94 1.50 63 79.0 147 1.30 528 2197

Birkbeck 12 1.04 170 54 TI5 17.1 127 469 2273

Shoals 13 0.74 1.67 27.8 59.6 126 1.00 430 1976

Cisne 14 126 243 1.7 680 203 207 866 21.79

Bluford : 15 077 .77 203 66.9 128 1.27 403 2061

Saybrook 16 126 253 127 628 245 235 849 2169

Catlin 17 1.86 340 52 706 242 247 768  25.09

Saybrook 18 158 3 48 723 269 235 1032 2505

Cisne 19 1.56 3.17 115 663 22 3.18 1032 2241

Piopolis 22 1.53 240 924 65.8 248 220 9.93 27.06
Silty Clay Loam

Flanagan 20 210 330 4.1 68.8 27.1 219 772 2638

Jacob 21 1.12 1.72 59 512 36.9 3.66 16.66 2846

Flanagan 23 1.84 308 63 671 266 258 934 2397

Drummer 24 1.79 338 9.0 63.4 276 337 1147 2307

Flanagan 25 229 428 92 600 308 363 1203 2177

Drummer 26 291 5.70 ‘87 610 303 405 1344 2333

Proctor 27 229 4.13 67 642 294 332 1104 2445

Flanagan 28 237 430 62 664 274 256 976 22.06

Drummer 29 3.16 532 126 559 315 396 1364 2623

Plano 30 1.81 320 79 656 265 279 921 2129

* Textural classification, Walkley-Black organic matter, soil texture, and moisture content from Worner (1989).
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were recorded at the Instrumentation and Sensing Research
Laboratory (ISRL) of the USDA Agricultural Research
Service in Beltsville, MD for Womer (1989). The primary
set of 270 samples consisted of three replications of each of
the 30 soils at each of three moisture tension levels — 0.033
MPa (1/3 bar, field capacity), 1.5 MPa (15 bar, wilting
point), and air dry. Another set of 56 samples was prepared
to provide additional information on the effects of soil
moisture on reflectance. This supplementary set consisted
of two replications of six soils (ID Nos. 4, 9, 16, 20, 23,
and 27; Table 1) at each of four additional moisture tension
levels (0.1 MPa, 0.4 MPa, 0.7 MPa, and 1.0 MPa). Two
895-point spectra were obtained for each sample:
visible/NIR data from 400.8 to 1116.8 nm on a 0.8 nm
bandpass, and NIR data from 802.0 to 2592.0 nm on a
2.0 nm bandpass.

Data were transformed to decimal reflectance (1.00 = a
perfect reflector) by comparison to a powdered halon
reflectance standard and recorded to four decimal places. A
five-point moving average routine reduced the number of
points per spectral curve from 895 to 297, producing
datasets with an effective 2.4 nm (visible/NIR) or 6.0 nm
(NIR) bandpass which could be more easily manipulated
for analysis. Visual comparison of plotted data verified that
no information was lost in this averaging operation, due to
the smooth nature of the soil reflectance curves (fig. 1).

Walkley-Black organic matter, soil moisture content,
and texture were determined by Worner (1989) for the
samples analyzed at the USDA, ISRL. Total organic
carbon content was determined by dry combustion of
duplicate samples of each soil in a LECO Model HF10
induction furnace.

‘A Minolta Model CR-110 Chroma Meter was used to
collect color coordinate data from a separate preparation of
the 270 primary soil samples. The Minolta CR-110 was a
handheld tristimulus colorimeter which .used diffuse
sample illumination and a 50 mm diameter sampling head
to integrate surface texture and color variation effects. Data
were obtained in the CIE Yxy format using the Dgs
standard illuminant to simulate the spectral power
distribution of natural daylight (Billmeyer and Saltzman,
1981). Readings were taken on three replicates of the 30
Tllinois test soils at three moisture tension levels (air dry,
0.033 MPa, and 1.5 MPa). The samples were prepared with

08
——— Air Dry

------ 1.5 MPa Tension
05 = __—— 0.033MPaTension

Percent Reflectance / 100

1600

Wavelength, nm

Figure 1-Mean spectral reflectance curves for Ade Loamy Snnd
(Soil 1) at three moisture tension levels.
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a smoothed viewing surface in a 50 mm diameter X 10 mm
deep flat black sample cup. Periodic recalibration of the
meter against a reflectance standard showed no apparent
drift in the x and y chromaticity coordinates, but in some
cases a measurable drift (up to 1%) in the Y tristimulus
value. Meter output was relatively insensitive to
irregularities in the soil surface, as long as the distance
between sampling head and soil surface was held constant.

DATA REDUCTION AND ANALYSIS

Unless specifically noted, all analyses used the carbon
values obtained by dry combustion, rather than the
Walkley-Black data. Calibrations were done with organic
carbon (rather than organic matter) as the dependent
variable, since carbon was the actual quantity measured
with the induction furnace.

The regression dataset of primary interest consisted of
all 30 test soils at the 0.033 MPa and 1.5 MPa moisture
tension levels, to bracket the soil moisture conditions likely
to be encountered during field operation of a soil organic
matter sensor. The air dry samples were not included in the
primary analyses as they would bias the regression toward
the drier end of the moisture content range. Separate
analyses of the data collected at each moisture tension were
also completed, to eliminate that part of the variability due
to soil moisture differences and to provide an indication of
the upper limit of predictive capability.

Color Coordinate Data. Raw color coordinate data

obtained from the Minolta Chroma Meter consisted of the
tristimulus value, Y, and the chromaticity coordinates, x
and y. Three other standard color coordinate sets — the
tristimulus values (X, Y, Z) and the CIELAB and CIELUV
uniform color coordinates (L¥*, a*, b*, and L¥, u*, v¥,
respectively) — were calculated using standard equations
(Billmeyer and Saltzman, 1981). A separate set of spectral
tristimulus values was calculated from the spectral
reflectance curves of the 270 primary soil samples, using
the weighted-ordinate method with points spaced every
5 nm from 380 to 780 nm (Billmeyer and Saltzman, 1981).
The CIE 1931 2° observer function and Dgs illuminant
were used in the calculations, to correspond to the test
conditions provided by the Minolta Chroma Meter. The
spectral tristimulus values were used to obtain spectral sets
of chromaticity coordinates and CIELAB and CIELUV
coordinates.

Multiple regression of the colorimeter-derived and
spectra-derived color coordinates against soil organic
carbon content was accomplished using the PC-SAS
computer package (SAS Institute, Inc., Cary, NC). Multiple
linear and quadratic regressions were performed using the
color coordinates in each of the systems described above.
Logarithmic transformations of the color coordinate data
were also used in an attempt to discover any multiplicative
effects. '

Spectral Reflectance Data. The results reported by
Smith et al. (1987) were subjected to further analysis and
validation tests. They had used SMLR on these same
reflectance data to select the best wavelengths for
prediction in four-wavelength and eight-wavelength
models. The independent variables in these models
consisted of the optical density [OD, defined as
logo(Ureflectance)] at wavelengths selected by an iterative
scanning program to maximize the correlations obtained.
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Smith et al. (1987) used the mean of the three replicate
spectral reflectance curves for analysis. Their application
of the four-wavelength model to the sixty averaged 1.5
and 0.033 MPa reflectance curves yielded an r2 of 0.81,
while the eight-wavelength model produced an r2 of 0.86.

In this study, the calibration equations obtained by
Smith et al. (1987) were applied to linearly independent
validation datasets (the spectral reflectance curves of the
individual replicate soil samples) to verify their predictive
capabilities. Also, their iterative scanning program was
modified by the addition of an outer loop to provide for
iteration of the starting wavelengths for the scan. This
allowed documentation of any variation in the prediction
wavelengths and correlations due to the initial conditions
for the iteration.

Partial least squares regression (PLS), implemented in
the Unscrambler package (CAMO A/S, Trondheim,
Norway), was used to analyze both the visible/NIR and the
NIR datasets. Because limitations in the analysis programs
required that the number of points per dataset be reduced
from 297 to less than 100, cubic spline interpolation was
used to produce datasets with 5, 10, or 20 nm point
spacings.

Since soil color was thought to be a viable indicator of
organic matter content, mfajor emphasis was placed on
analysis of the visible data (380-780 nm on a 5 nm
spacing) as a separate entity. A supplementary analysis of
the complete visible/NIR dataset (380 to 1110 nm on a
10 nm spacing) was also done to see if extending the
sensing range would result in a better correlation to soil
organic carbon. Both the raw reflectance data and the
following transformations of that data were used:

Optical density (OD) transformation:
logo(I/reflectance)
Kubelka-Munk transformation:
(1-reflectance)2/2*reflectance
Square root transformation.

The OD transformation is an extrapolation of the Beer-
Lambert law, developed to quantify constituents present in
transmissive samples. The Kubelka-Munk transformation
is based on the theory of diffuse reflectance of a scattering
medium, and ‘its proportionality to concentration is more
rigorously defined than that of OD. In many practical cases
both transformations have given equally good results,
particularly for NIR reflectance data (Birth and Hecht,
1987). The square root transformation, although not
physically based, had yielded good results in preliminary
tests.

The NIR dataset (800-2580 nm on a 20 nm spacing) was
analyzed with PLS using raw reflectance data, OD
transformed data, and Kubelka-Munk transformed data.
Analyses were also done on subsets of the NIR data to
determine what reduction in predictive capability would be
seen if fewer individual reflectance readings with a wider
bandwidth were sensed. Supplementary analyses of the
NIR dataset documented performance of the prediction
equations at additional moisture tension levels intermediate
to the 0.033 MPa and 1.5 MPa calibration datasets.

In all PLS analyses, cross-validation techniques integral
to the Unscrambler analysis program were used to verify
the validity of the calibration equation. Outliers identified
by the program were iteratively eliminated from the
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Figure 2-Fundamental metamer transformation of the mean spectral

reflectance curves for Ade Loamy Sand (Soil 1).

calibration step to obtain an improved fit; however, these
outliers were retained in the prediction step.

Principal Components Regression (PCR) was used to
analyze the optical density transformed visible and
visible/NIR datasets for the combined moisture tensions of
0.033 MPa and 1.5 MPa. The cross-validation and outlier
removal techniques used for PLS were also used in the
PCR analysis.

Fundamental Metamer Data. Both the visible
reflectance data and the color coordinate data from the
Minolta Chroma Meter were transformed to the

- fundamental metamer representation (fig. 2) using the

methods of Cohen and Kappauf (1985). The fundamental
metamer (that part of the spectral function which stimulates
the human color-sensing mechanism) is in some sense
intermediate between the spectral reflectance and color
coordinate representations of a visual stimulus. The
fundamental metamer is unique for each color stimulus (as
are color coordinates), yet it contains information at each
wavelength in the spectrum (as does the spectral
reflectance function).

PLS was used to analyze the fundamental metamer data
(380 to 780 nm on a 5 nm spacing) for the combined
dataset with soil moisture tensions of 0.033 MPa and
1.5 MPa. Cross-validation and outlier elimination were
used to obtain the most predictive model.

RESULTS AND DISCUSSION
So1L PROPERTY DETERMINATION

The spectral reflectance curves (fig. 1) obtained at the
USDA, ISRL exhibited a difference in reflectance between
the overlapping portions of the visible and NIR spectra for
each soil moisture tension, due to sample presentation. An
open sample cup was used for the visible spectra, while a
quartz window covered the cup used for the NIR spectra,
resulting in lower readings.

Mean organic carbon obtained by dry combustion for
the 30 test soils is reported in Table 1. The duplicate
samples analyzed by dry combustion agreed within 0.1%
carbon in all cases. Walkley-Black organic matter, soil
texture and moisture content data determined by Worner
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TABLE 2. Most predictive models selected by multiple regression
analysis of Minolta Chroma Meter color coordinate data

Sample moisture
tension
%C =f(L* b* L*2,b*2)t 0033and1.5MPa 072 036

Model 2 SEE*

%C=f(Y,x,y,¥2) 0.033and I.5MPa  0.70 037

%C=f(x,x2) 0.033and 1.5MPa 068 038
%C="f(x,x2) 0.033 MPa 0.85 0.26
%C="f(x,x2) 1.5MPa 0.62 042
%C =f(x,x2) airdry 0.56 045

* SEE = standard error of the estimate, in percent organic carbon
T Modelterms: ~ L*,b*= coordinates from CIELAB color space
% C= percent organic carbon
Y= tristimulus value
X,y= chromaticity coordinates

(1989) for the samples analyzed at the USDA, ISRL are
also presented in Table 1.

EXPLORATORY DATA ANALYSIS

Color Coordinate Data. An analysis of variance
(ANOVA) procedure detected no significant differences in
color coordinates or moisture due to the three replications.
Multiple regression models (Table 2) were identified as
having the best predictive capability for the combined
0.033 and 1.5 MPa color coordinate data, and for the
individual moisture tensions. A multiple quadratic
regression using the L* (lightness) and b* (yellowness-
blueness) coordinates from the CIELAB uniform color
* space yielded the highest coefficient of determination (2 =
0.72) and the lowest standard error of the estimate (SEE =
0.36% carbon), while maintaining significance of all terms
in the model. The best statistically valid model obtained for
the Yxy system of color coordinates was linear in Y and x,
and quadratic in y. A quadratic regression using the x

TABLE 3. Most predictive models selected by multiple regression

chromaticity coordinate was the best significant model at a
single moisture tension, Logarithmic transformations of the
color coordinate data gave poorer results than the
untransformed data, suggesting the absence of pure
multiplicative effects. Results obtained with coordinates
from the CIELUV uniform color space were similar in
predictive capability and significance of model terms to the
results obtained with coordinates from the CIELAB
system.

Similar prediction models (Table 3) were applied to the
color coordinate data obtained from the spectral reflectance
curves. With the spectral data, a 4-term Yxy model (linear
in Y and x, quadratic in y) was the best predictor of organic
carbon. The best CIELAB model was quadratic in L* and
a* (the redness-greenness dimension), but the quadratic
L*b* model used for the colorimeter data was also a good
predictor. The quadratic model in the x chromaticity
coordinate was again the best predictor at a single moisture
tension.

Comparison of the predictive capability of the two data
sources (Tables 2 and 3) showed that higher correlations
were generally obtained with the color coordinates from
the handheld colorimeter than with the color coordinates
calculated from spectral reflectance curves. However, even
the best correlations found by color coordinate multiple
regression analysis were not high enough to pursue this
sensing method for development of a field organic matter
sensor. :

Spectral Reflectance Data. The 4-wavelength and 8-
wavelength models developed by Smith et al. (1987) were
used to predict the Walkley-Black organic matter content
for each replication of the data individually, as well as for
the entire dataset (Table 4). Although the 8-wavelength
model had the better predictive capability for the
calibration data, the 4-wavelength model was equally as
good or better for all measures of prediction in the
validation data. This indication of overfitting in the 8-
wavelength model would probably have been more

TABLE 4. Validation results for stepwise multiple linear
regression on 0.033 and 1.5 MPa moisture tension data

8-Wave- 4-Wave-

analysis of color coordinate data calculated from soil spectral Prediction Measure length length
reflectance curves Model Model
Sample moisture 2 Calibration Step
i tension # Coeff. of Determination (%) 036 081
%C = f (L*, b*, L*2,b* 2)t 0.033 and 1.5 MPa 0.62 042 Std. Error of Calibration (SEC)* 028 032
Validation Step
=f(L* a% L*2,3*2 and1.5MPa 064 04l
BESRRRSSEERA 0.033 : SEP - all datat 036 034
SEP-rep 1 data 036 033
= 0.65 0.41
%C=f(Y,x,y,y?) 0.033 and 1.5 MPa e e =
%C = f (x, x2) 0.033and1.5MPa 059 044 SEP -rep 3 data 034 034
bias — all data} 001 -0.01
= 0.84 028
%C =f(x,x2) 0.033 MPa _ ey ol Pusd e
bias —rep 2 data 0.05 -0.01
= 1 048
%C=f(x,x2) 1.5MPa 05 bias —rep 3 data a5 ain
%C=f(x,x2) airdry 058 0.44 * SEC (standard error of calibration) is the standard error of the

* SEE = standard error of the estimate, in percent organic carbon
+ Model terms: L*, a*% b*= coordinates from CIELAB color space
% C= percent organic carbon
Y= tristimulus value
X,y= chromaticity coordinates

VoL 34(4): JuLy-AugusT 1991

estimate in the calibration data, in percent organic carbon.

1 SEP (standard error of prediction) is the standard error of the
estimate in the validation data, in percent organic carbon.

} Biasis the difference between the predicted percent carbon
mean and the measured percent carbon mean.
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apparent if a completely independent validation dataset had

been used.

The poorer predictions obtained with the 8-wavelength
model could be explained by examination of the calibratio
equation. The 8-wavelength model was: '

OMC = ko + k; * ODa240 - ODsgogo
ODs7s5.2 - ODs4s.8 6))
+ 'k * ODi0216 - ODio192
ODs17.6 - ODg20.0

where
OMC=soil organic matter content, %,
Kn multiple regression coefficients,
OD, = optical density at wavelength n,
" specified in nm.

The numerator and denominator in the first quotient term
were composed of the difference in OD at two distinct
parts of the curve. However, the numerator and
denominator in the second quotient term were both
composed of the difference in OD between two adjacent
points on the curve. The OD at these adjacent points never
differed by more than 11 ‘times the digital resolution to
which the data was recorded, so the second quotient term
had a low signal-to-noise ratio and poor predictive
capability to other than the calibration data. The 4-
wavelength model, described by equation 1 with k; set
equal to zero, avoided the noise problems caused by the
second quotient term in the eight-term model.

The prediction wavelengths selected by the iterative -

scanning program and the correlations obtained were found
to be dependent on the seed (initial condition) wavelengths.
Program runs using the 0.033 and 1.5 MPa visible/NIR
dataset with 20 different sets of initial conditions chose 17
different sets of wavelengths as the optimum, with
correlations ranging from r2 = 0.67 to r2 = 0.81. Some
degree of robustness in the wavelength selection process
was evidenced, as the wavelengths selected for the five
best prediction equations were very similar. The numerator
wavelengths were chosen near the two ends of the visible
range, and the denominator wavelengths were chosen in

TABLE 5. Best sets of four prediction wavelengths
for stepwise multiple linear regression on 0.033 and

1.5 MPa moisture tension data
Wave- Wave- Wave- Wave-
r  lengthl* length2  length3 length4
(nm) (nm) (nm) (nm)

0.81 424.0 808.0 5752 548.8
0.79 872.8 4240 563.2 575.2
0.78 436.0 800.8 553.6 5752
0.77 4312 764.8 5416 5752
0.76 817.6 407.2 5320 5752

* Wavelengths of absorbances used in the prediction
equation:

oMCai i+ L%
0D, - 0D,

where: OMC = soil organic matter content, percent
QOD;, =optical density at wavelength n
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TABLE 6. Summary of partial least squares and principal
components regression results with the visible-NIR dataset (380-
1110 nm) at moisture tensions of 0.033 and 1.5 MPa

Number of

Factors*

SEP

within

Total 001
Dataset Valid ofmin. r? SECt SEP}

Visible-NIR, 0.033 & 1.5 MPa

Optical density transform§ 10 6 081 030 032
Optical density, PCR 11 7 076 033 033

Visible, 0.033 & 1.5 MPall

Reflectance 10 9 072 036 039
Optical density transform 9 5 0.80 030 033
Kubelka-Munck transform 9 5 077 032 037
Square root transform 10 8 079 031 035
Optical density, PCR 10 6 076 033 033
Fundamental metamer from 3 3 050 048 0.48
spectral data
Fundamental metamer from 3 3 050 047 047
color coordinate data
Visible, 0.033 MPa
Reflectance 9 8 087 024 030

Optical density transform 5 3 085 027 027

Visible, 1.5 MPa
Reflectance 9 5 076 033 040
Optical density transform 7 7 082 029 030

* The maximum number of factors valid by cross-validation, and the
number of factors necessary to achieve an SEP within 0.01 of the
minimum.

+ SEC (standard error of calibration) is the standard error of the
estimate in the calibration data, in percent organic carbon.

1 SEP (standard error of prediction) is the standard error of the
estimate in the validation data, in percent organic carbon.

§ All analyses by partial least squares regression unless denoted by PCR
(principal components regression).

1 Visible analyses included data from 380-780 nm.

the yellow-green range from 530 to 580 nm (Table 5).

Partial least squares (PLS) regression on the visible/NIR
(380-1110 nm) reflectance data for 0.033 and 1.5 MPa
moisture tensions yielded cross-validated correlations
(Table 6) slightly better than the SMLR results obtained
with the iterative scanning program. Correlations obtained
when considering the visible (380-780 nm) data alone were
slightly lower. As was the case with the color coordinate
data, the 0.033 MPa moisture tension data were better
correlated with organic carbon than were the 1.5 MPa
moisture tension data. In general, the optical density (OD)
transformed spectral data were more highly correlated with
organic carbon than were the raw reflectance data or the
other transformations. If similar correlations were obtained,
the OD data required the extraction of fewer factors. In
many of the datasets analyzed, the later factors extracted by
the model were not major contributors to reducing the
standard error of prediction (SEP, the standard error of the
estimate in the validation data), and a smaller number of
factors could provide an SEP within 0.01% organic carbon
of the minimum (Table 6).
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TABLE 7. Summary of partial least squares regression results with
the NIR dataset (800-2580 nm) at moisture tensions of

0.033 and 1.5 MPa
Number of
Factors*
SEP
Numi <thi
ofpoints Total 001
Dataset used valid ofmin. @ SECt SEP}
20 nm spacing
Reflectance 90 11 11 088 023 024
Optical density 90 12§ 10 091 020 o022
Kubelka-Munck 90 11 10 079 031 033
40 nm spacing
Optical density 43 14 12 092 018 020
60 nm spacing
Optical density 28 17§ 12 092 018 020
Optical density, 17 13 11 091 020 o021
11 points deleted
Optical density, 15 13 11 091 020 021
13 points deleted
100 nm spacing
Optical density 16 13 12 090 022 o2
Optical density, 13 12 11 089 02 023
3 points deleted

* The maximum number of factors valid by cross-validation, and the
number of factors necessary to achieve an SEP within 0.01 of the
minimum SEP.

+ SEC (standard error of calibration) is the standard error of the
estimate in the calibration data, in percent organic carbon.

$ SEP (standard error of prediction) is the standard error of the
estimate in the validation data, in percent organic carbon.

§ Maximum number of factors which could be extracted by the
program, although additional factors may be valid. Results
presented are based on this number of factors.

-

The combination of the NIR (800-2580 nm) dataset and
PLS analysis yielded the best correlations between organic
carbon content and soil reflectance properties of all the
dataset/calibration method combinations tested (Table 7).
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Figure 3-Predicted vs. observed organic carbon content obtained
with partial least squares regression on 0.033 and 1.5 MPa moisture
tension OD transformed data in the NIR wavelength range.
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A maximum r2 of 0.92 and a minimum SEP of 0.20%
carbon were obtained (fig. 3) using OD transforméd NIR
datasets with either a 60 nm or a 40 nm spacing, created by
averaging the adjacent two or three spectral points,
respectively, in the initial 20 nm spacing PLS dataset. Most
of the predictive capability of the data was retained after
widening the data point spacing to 100 nm and eliminating
points at wavelengths contributing little to the regression
(Table 7). An 12 of 0.91 and an SEP of 0.21 were obtained
when only 15 of the original 90 independent variables were
retained in the model.

The NIR spectra provided better predictions of organic
carbon than did the visible spectra by removing some of
the effects of soil moisture on soil reflectance properties.
Spectral reflectance in the 1700-2000 nm region has been
shown to be strongly correlated with soil moisture content
(Dalal and Henry, 1986), due to the presence of a strong
water absorption band centered at approximately 1940 nm
(fig. 1). Examination of the PLS output showed that points
in the 1940 nm water absorption band had the most
influence on the factors extracted from the data, thus
compensating for decreases in soil reflectance due to
increased soil moisture. Another advantage of the NIR data
was that noise due to the quantization of the data was a
smaller fraction of the NIR spectra than of the visible
spectra, due to the increased soil reflectance at the longer
wavelengths

Linear principal components regression on the OD
transformed visible/NIR dataset provided slightly less
predictive capability than did PLS regression on the same
data (Table 6), and required the extraction of more
regression factors.

Fundamental Metamer Data. PLS analysis of the
fundamental metamer data showed this representation to
have less predictive capability than reflectance or optical
density datasets for the same wavelength and moisture
tension range (Table 6). Only three factors were valid for
the fundamental metamer data from either source
(colorimeter or spectral reflectance curves), because the
fundamental metamer has a rank of only three (Cohen and
Kappauf, 1985). Visual comparison of the fundamental
metamer curves for the 30 soils (for example, fig. 2), also
revealed the low dimensionality of the data. All the curves
had the same basic shape, with the only differences being
in the heights of the two peaks and of the intermediate

trough.

SELECTION AND REFINEMENT OF PREDICTION METHOD
Based upon the above results, the combination of NIR
optical density transformed data and PLS calibration was
selected as having the most promise for the prediction of
soil organic carbon content. The NIR data exhibited a

reduction in standard error of over 30% when compared to-

visible spectral reflectance and color data. PLS generally
yielded slightly better calibrations than SMLR and PCR
where all three methods were used on the same data.
Additionally, the PLS software allowed calibrations to be
generated with the least computational effort.

Accuracy of the selected NIR/PLS method appeared
acceptable for the practical measurement of soil organic
carbon. Published data quantifying infield organic carbon
variations are rare, but carbon variations measured within
80 m in an apparently uniform Central Illinois field
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TABLE 8. Summary of partial least squares regression results for reducing the
range of the NIR (800-2550 nm) optical density transformed dataset at moisture

tensions of 0.033 and 1.5 MPa
Number of
Factors*
SEP
Range of Number within
center ofpoints  Total 0.01
wavelengths used valid  ofmin. P SECt SEPt
40 nm data spacing
850-2530 nm 43 14 12 092 018 020
' 1650-2410 nm 20 11 9 091 020 o021
1730-2410nm 18 11 9 091 020 021
1730-2370 nm 17 12 9 091 020 021
1730-2330 nm 16 11 9 0.90 02 022
1770-2330 nm 15 13 10 0.86 025 025
1730-2290 nm 15 10 10 038 023 023
60 nm data spacing
880-2500 nm 28 17§ 12 092 018 020
1300-2380 nm 19 13 10 092 019 020
1480-2380 nm 16 14 10 092 019 020
1660-2380 nm 13 11 8 091 020 020
1720-2380 nm 12 11 10 091 020 020
1780-2380 nm 11 9 9 0.87 024 025
1720-2320 nm 11 10 9 0.89 022 022
* The maximum number of factors valid by cross-validation, and the number
of fa Y to achieve an SEP within 0.01 of the minimum SEP.

T SEC (standard error of calibration) is the standard error of the estimate in the
calibration data, in percent organic carbon.

$ SEP (standard error of prediction) is the standard emror of the estimate in the
validation data, in percent organic carbon.

§ Maximum number of factors which could be extracted by the program,
although additional factors may be valid. Results presented are based on this
number of factors.

(Sudduth, 1989) were approximately ten times as large as '

the SEP’s obtained with this method.

A sequence of analyses was completed to investigate the
effect of a reduced wavelength range on the predictive
capability of the regression. Since the optical density
transformed NIR datasets with 40 nm and 60 nm data
spacings were the most predictive over the full wavelength
range (Table 7), they were chosen for further analysis. As
data points were iteratively eliminated from the ends of the
data range, the reduction in predictive capablhty was
recorded (Table 8). For both datasets, the minimum range
of wavelengths poss:ble before the prediction degraded (in
terms of an increase in the SEP of more than 0.01%
organic carbon from that of the full-range data) was
similar. For the data on a 40 nm spacing, that range was
1730 to 2370 nm (17 data points), with an SEP of 0.21. For
the 60 nm data, the range was 1720 to 2380 nm (12 data
points), with an SEP of 0.20.

The predictive capability of the 60 nm dataset ranging
from 1720 to 2380 nm was verified for a range of
additional moisture tensions. The prediction equation
developed using the 0.033 and 1.5 MPa data was applied to
a supplementary set of data collected on six of the test soils
at intermediate moisture tensions of 0.1, 0.4, 0.7, and
1.0 MPa, yielding an SEP of 0.18% carbon. Extrapolation
of the prediction equation developed with the 0.033 and 1.5
MPa data to the air dry data for the 30 soil samples did not
give good results, with an SEP of 0.35 percent carbon.
Inclusion of the data for air dry soil along with the 0.033
and 1.5 MPa moisture tension data in the calibration step
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produced better correlations, with an r2 of 0.86 and an SEP
of 0.25.

CONCLUSIONS

1. Color coordinate data were not highly predictive of
the organic carbon content of Illinois soils, with a
maximum r2 of 0.72 and a minimum standard error
of 0.36% carbon obtained for combined 0.033 and
1.5 MPa moisture tension data obtained with a
handheld colorimeter.

2. The fundamental metamer transformation of soil
reflectance or color coordinate data was not
predictive of organic carbon content.

3. An 8-wavelength model obtained by stepwise
multiple linear regression (SMLR) was found to be
inappropriate, due to overfitting of the calibration
data. A valid 4-wavelength SMLR model yielded an

* 12 of 0.81 and a standard error of prediction (SEP) of
0.36. y

4. Partial least squares (PLS) regression on visible and
near infrared (NIR) data from 380'to 1110 nm
yielded a maximum validated r2 of 0.81 and a
minimum SEP of 0.32 for the combined 0.033 and
1.5 MPa data.

3. Data obtained at 0.033 MPa moisture tension were
more predictive of carbon content than data at
1.5 MPa or the two datasets combined.

6. The visible/NIR dataset (380-1110 nm) was only
marginally more predictive of organic carbon than
was the visible (380-780 nm) dataset.

7. Optical density (OD) transformation of the soil
reflectance data enhanced its organic carbon
predictive capability.

8. NIR OD transformed data (800-2580 nm) and PLS
analysis yielded the best predictions of organic
carbon with the combined 0.033 and 1.5 MPa data.

9. Excellent correlation (r2 = 0.91, SEP = 0.20) was
retained when the NIR data were smoothed to a
60 nm data point spacing and the wavelength range
reduced to 1720-2380 nm, for a total of only 12 data
points used. Similar correlations were obtained with
a 40 nm data spacing and a slightly smaller
wavelength range.
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