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ABS'IRACf
Multivariate calibration methods, including stepwise

multiple linear regression, principal components
regression, and partial least squares regression, were
applied to soil color and spectral reflectance data to predict
the organic matter content of Illinois soils. Data were
obtained with a visible/near infrared (NIR) spectro-
photometer and a commercial colorimeter on a calibration
set consisting of 30 illinois mineral soils at 0.033 MPa and
1.5 MPa moisture tension levels. Good correlation with soil
organic matter (r2 =0.91, standard error of prediction =
0.34% organic matter) was obtained when using as few as
12 NIR reflectance data pOints in the range from 1720 to
2380 nm. Color coordinate and visible reflectance data
provided considerably poorer predictions of soil organic
matter content. KEYWORDS.Herbicides, Color, Near
infrared, Colorimeter, Spectrophotometry, Multivariate
calibration-

INTRODUCflON

Cropping system management is generally practiced
on a field basis, with herbicides, as well as other
inputs such as fertilizer and seed, applied at a

uniform rate over the entire field. Actual needs for
herbicide inputs can commonly vary by a factor of two or
more over the field so that a uniform rate based on the
spatially-averaged requirements is too high for some areas
and too low for others. Over-application results in
increased production costs and may also cause
environmental damage due to excess chemical
contaminating surface water or groundwater. Under-
application cart result in decreased yields due to poor
control of pests. Ideally, application rates should be
adjusted to meet the requirements for each part of the field.

With many soil-applied herbicides, the application rate
required for effective weed control increases as soil organic
matter content increases, due to adsorption of the herbicide
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on the cation exchange complex of the organic matter.
Meggitt (1970) reported on an experiment in which a linear
increase in herbicide dose was required to maintain weed
control as organic matter increased up to 15%, when uSing
s-triazines, thiocarbamates, and pyridazinones. Gradual
variations in organic carbon as high as 2:1 have been seen
within an 80 m transect in a flat, apparently uniform field
in Central lllinois (Sudduth, 1989); larger variations might
be expected hi areas with more variable topography or over
longer distances. With this level of variability, significant
opportunity exists for cost savings and input optimization
of soil-applied herbicides based on soil organic matter
content.

It is well known that soils of higher organic matter
content are generally less reflective, or darker in color, than
those soils with lower organic matter contents. Several
reflectance and color based methods of predicting organic
matter are evaluated in this article with respect to a
representative set of illinois agricultural soils.

LITERATIJRE REVIEW
Many researchers have correlated soil color properties

with organic matter or organic carbon content.'" The color
properties used have included the Munsell coordinates of
hue, value, and chroma; and coordinates from several of
the Commission International de l'Eclairage (CIE) color
spaces (Billmeyer and Saltzman, 1981). In general,
attempts to extract a single relationship for soils from a
wide geographic range have yielded poor correlations
(Mc Keague et al., 1971; Karmanov and Rozhkov, 1972).

Studies focused on soils from a single state or other
limited geographic areas have been more successful.
Alexander (1969) correlated soil color with the organic
matter content of over 300 lllinois soils and created a color
chart which could be used for field classification of a moist
soil into one of five overlapping organic matter ranges.
Alexander reported that an experienced technician could
determine organic matter content within the correct range
more than 95% of the time.

Page (1974) used a commercially available color-
difference meter to estimate the organic matter
concentration in air dry surface samples of 96 Atlantic
Coastal Plain soils. Organic matter content was estimated
within :f:O.50%of the actual value for 75% of the soils
tested (r2 =0.79). Steinhardt and Franzmeier (1979)

*In the context of this manuscript, the terms organic matter and
organic carbon can be used interchangeably; soil organic matter content is
defined as 1.72 times the organic carbon content.
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correlated Munsell value and chroma and organic matter
content for surface horizon samples of plowed silt loam
soils in Indiana. A 90% accuracy rate was reported when
classifying 219 soil samples into one of three categories -
less than 3% organic matter, 3 to 5%, and over 5%.

Fernandez et al. (1988) correlated Munsell color and
organic matter within a given soil landscape, hypothesizing
that there would be a closer relationship than those
previously reported for wider geographic areas. Samples
collected from three soil series in each of two landscapes
yielded high correlations between soil organic matter and
Munsell value (moist soil r2 = 0.92, dry soil r2 = 0.94).
Different calibrations were required at the two moisture
levels, and the calibrations developed were applicable only
within the landscapes studied, containing only silt loam
and silty clay loam soils.

Reflectance measurement has been used extensively to
estimate soil organic matter content. Two particular
spectral regions have been utilized -. the visible region,
from 380 to 780 om, and the near infrared (NIR) region,
from. the upper boundary of the visible region to about
3000 nm. Schreier (1977) found that the longer visible
wavelengths had the highest predictive capability, with a
maximum r2 of 0.67 obtained at 600 nm. Obukhov and
Orlov (1964) selected the 750 nm region, while
Vinogradov (1981) reported the best correlations in the red
range of 640 to 720 om. Dalal and Henry (1986) used near
infrared (NIR) reflectance to predict the organic carbon
content (r2 = 0.86) of selected Australian soils
simultaneously with moisture and total nitrogen
determination.

Baumgardner et a1. (1970) correlated spectral
reflectance in the 620 to 666 om band with organic matter
for 197 surface soil samples with organic matter contents
from 0.7 to 6.3% . Two separate linear relationships, one
below and one above 4% organic matter, best described the
data. Stoner (1979) correlated average reflectance in
100'om and wider spectral bands with organic carbon for
481 soils collected from across the continental U.S. They
obtained an r2 of 0.46 when considering all soils, and a
maximum r2 of 0.66 when analyzing correlations
separately by climatic zone.

Krishnan et al. (1980) correlated reflectance character-
istics in the 400 to 2400 nm range and organic matter
content for ten illinois soils at four moisture levels. Better
correlations were obtained with information from the
visible range (400 to 780 om) than with NIR data (780 to
2400 om). A first derivative model using optical density
data yielded an r2 of 0.85 with the calibration dataset.
Other researchers (Pitts et ai., 1986) could not obtain
satisfactory correlations when using this model with an
expanded set of soils. Pitts et al. (1986) successfully
predicted organic matter contents of 30 lllinois soils using
an exclusion algorithm and polychromatic (white), green,
and red reflected light. The width of the prediction range
for each soil varied from 1 to 3% organic matter, with an
average range width of 1.4%.

Griffis (1985) developed and tested a soil carbon sensor
which yielded an r2 of 0.75 for a set of 18 air dry Arkansas
soils. Shonk and Gaultney (1988) developed a real-time
soil organic matter sensor intended to be recalibrated for
each new soil landscape, rather than for the larger
geographic area (such as an entire state) attempted by other
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researchers. Laboratory tests yielded good correh.1tions
(r2 = 0.80 to r2 = 0.98) within a single landscape at a
single moisture content. Field tests showed a curvilinear
relationship between sensor output and organic matter,
with independent calibrations needed for variations in
travel speed or sensing depth.

Prediction of organic matter content from color or
reflectance data requires the application of multivariate
calibration techniques. The relationship between the
dependent variable. (organic matter content) and several
independent variables (color coordinates or reflectance at
various wavelengths) must be estimated over a number of
samples (soils) in such a way as to be able to predict the
value of the dependent variable for future samples. Several
approaches can be used (Martens et al., 1983):

Multiple linear regression (MLR) is the simplest method
to use. It is applicable in situations when there are many
more samples than independent variables and when the
independent variables have low noise and low inter-
correlation.

Stepwise multiple linear regression (SMLR) can be used
with sets of independent variables that are highly
correlated. A search algorithm is used to find the subset of
independent variables that provides the best description of
the dependent variable. If there are few samples, SMLR
may cause overfitting of the data, and the ability to predict
to other than the calibration samples may be lost. Hruschka
(1987) suggested that a minimum of ten samples were
required for each estimated regression constant and for
each varied parameter (such as wavelength).

Principal component regression (PCR) is an example of
a latent variables regression method (Martens and Naes,
1987). Latent variables methods reduce the set of collinear
independent variables to a smaller set of orthogonal
components which represents most of the variability in the
original data and contains a reduced amount of random
measurement noise. The optimum number of components
to use in the analysis can be found by the method of cross-
validation. PCR consists of first reducing the
dimensionality of the data by the use of principal
components analysis (PCA), and then independently
performing an MLR to relate the PCA factors to the
dependent variable. PCA was first applied to soil spectral
reflectanceanalysisby Condit(1970). .

Partial least squares regression (PLS), another latent
variables method, is similar to PCR but the components
extracted from the data are a function of the values of both
the independent and the dependent variables. The two steps
of reduction in data dimensionality and regression are
performed simultaneously so that small but relevant
differences that might be ignored ina PCR are included in
the solution. Since PLS components are selected to
maximize both description of the independent variables
and correlation to the dependent variables, the relevant
predictive information tends to be concentrated in fewer
components, making this method more efficient than PCR
(Martens and Naes, 1987). Martens et al. (1983) state!i that
PLS should yield better results than other methods when
the number of samples is low and/or when the calibration
data is noisy. For an algorithmic description of the PCR
and PLS t~hniques, the reader is referred to Martens and
Naes (1987).

~

",'

II

i
I

I

I
I'
I
.\,

I'
.,

j!

I

i
:,

.190.1



'" -"'''''",,''. --",v",

OBJECTIVE PROCEDURE
The objective of thi!l !ltudy WMto !lelect thE:optimum Thirty lllinoi!l mineral !loils. !lelected M representative

combination of wavelength range. data type. and of the state's important agricultural soils, formed the
calibration method for prediction of soil organic matter calibration dataset used in this study (Table 1). The set
content from color coordinate or visibleINIR spectral included 10 soils initially used by Krishnan et al. (1980)
reflectance data. If adequate predictive capability was and another 20 soils used in later studies by Pitts et al.
obtained using color coordinates (or the related (1986), Worner (1989). and Smith et al. (1987). The soil
fundamental metamer representation), a tristimulus samples were prepared for analysis by removal of foreign
colorimeter could be used as a simple, relatively material and crushing to pass through a 2 mm square mesh
inexpensive sensor. Otherwise, a spectrophotometer or sieve.
similar instrument would be needed to obtain reflectance
data at points along the spectral curve. SOIL PROPERTYDETERMINATION

-Visible and NIR reflectance curves for the 30 test soils

TABLE 1.OrgauJccarbon contentsand physic:alcharacteristicsof the 30 IDlnolssoilsused in the study

SoilTexture Gravimelric Moistun:
ny Walkley -

Combustion Black
Organic Organic Air 1.5 0.033

Soil Name and ID Carbon Malter Sand sOt Cay ny MPa MPa
TexturalCass* Nwnber (Ii» (Ii» (Ii» (Ii» (Ii» (Ii» (Ii» (Ii»

LoamySand
Ade 1 0.45 0.67 86.5 7.3 6.2 0.48 1.56 4.19
Plainfield 2 0.59 1.05 83.7 12.7 3.6 Q.68 1.11 6.14
Sparta 3 om 1.73 85.4 10.4 4.2 0.70 1.41 6.22
Mamnee 4 1.04 1.54 84.1 7.6 . 8.3 1.02 2.12 6.15

Sandy Loam
Canni 5 1.14 1.85 67.2 21.7 11.1 1.44 3.94 9.68

Loam
Ambraw 6 1.26 2.25 48.0 29.2 22.0 2.19 8.74 15.47
TICe 11 099 1.33 25.8 so.O 24.2 2.27 8.41 20.45

Clay
Jacob 7 2.01 2.95 3.8 33.6 62.6 7.55 24.43 36.85

Cay Loam
Proctor 8 0.82 1.48 25.6 47.1 27.3 2.19 7.66 19.19
Darwin 9 1.35 2.13 34.5 33.9 31.6 2.73 10.97 20.67

SiltLoam
Wyoocs: 10 0.94 1.50 6.3 79.0 14.7 1.30 5.28 21.97
Birkbeck 12 1.04 1.70 5.4 77.5 17.1 1.27 4.69 22.73
Shoals 13 0.74 1.67 27.8 59.6 12.6 1.00 4.30 19.76
asne 14 1.26 2.43 11.7 68.0 20.3 2.00 8.66 21.79
Bluford 15 0.77 1.77 20.3 66.9 12.8 1.27 4.03 20.61

Saybrook 16 1.26 2.53 12.7 62.8 24.5 2.35 8.49 21.69
'

Catlin 17 1.86 3.40 5.2 70.6 24.2 2.47 7.68 25.09

Saybrook 18 1.58 3.17 4.8 72.3 26.9 2.35 10.32 25.05
asne 19 1.56 3.17 11.5 66.3 22.2 3.18 10.32 22.41

Piopolis 22 1.53 2.40 9.4 65.8 24.8 2.20 9.93 27.06

SiltyCay Loam
Flanagan 20 2.10 3.30 4.1 68.8 27.1 2.19 7.72 26.38
Jacob 21 1.12 1.72 5.9 57.2 36.9 3.66 16.66 28.46
Flanagan 23 1.84 3.08 6.3 67.1 26.6 2.58 9.34 23.97
Drummer 24 1.79 3.38 9.0 63.4 27.6 3.37 11.47 23.00

Flanagan 25 2.29 4.28 9.2 60.0 30.8 3.63 12.03 21.77
Drummer 26 2.91 5.70 -8.7 61.0 30.3 4.05 13.44 23.33
Proctor 27 2.29 4.13 6.7 64.2 29.4 3.32 11.04 24.45

Flanagan 28 2.37 4.30 6.2 66.4 27.4 2.56 9.76 22.06
Drummer 29 3.16 5.32 12.6 55.9 31.5 3.96 13.64 26.23
PIano 30 1.81 3.20 79 65.6 26.5 2.79 9.21 21.29

. Texturalclassification,Walkley-Blackorganicmatter,soiltexture,andmoisturecontentfromWomer(1989).
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were recorded at the Instrumentation and Sensing Research
Laboratory (ISRL) of the USDA Agricultural Research
Service in Beltsville, MD for Womer (1989). The primary
set of 270 samples consisted of three replications of each of
the 30 soils at each of three moisture tension levels - 0.033
MPa (1/3 bar, field capacity), 1.5 MPa (15 bar, wilting
point), and air dry. Another set of 56 samples was prepared
to provide additional information on the effects of soil
moisture on reflectance. This supplementary set consisted
of two replications of six soils (10 Nos. 4, 9, 16, 20, 23,
and 27; Table 1)at each of four additional moisture tension
levels (0.1 MPa, 0.4 MPa, 0.7 MPa, and 1.0 MPa). Two
895-point spectra were obtained for each sample:
visiblelNIR data from 400.8 to 1116.8 nm on a 0.8 nm
bandpass, and NIR data from 802.0 to 2592.0 nm on a
2.0 nm bandpass.

Data were transformed to decimal reflectance (1.00 =a
perfect reflector) by comparison to a powdered halon
reflectance standard and recorded to four decimal places. A
five-point moving average routine reduced the number of
points per spectral curve from 895 to 297, producing
datasets with an effective 2.4 om (visible/NIR) or 6.0 om
(NIR) bandpass which could be more easily manipulated
for analysis. Visual comparison of plotted data verified that
no information was lost in this averaging operation, due to
the smooth nature of the soil reflectance curves (fig. 1).

Walkley-Black organic matter, soil moisture content,
and texture were determined by Womer (1989) for the
samples analyzed at the USDA, ISRL. Total organic
carbon content was determined by dry combustion of
duplicate samples of each soil in a LECO Model HFlO
induction furnace.

'A Minolta Model CR-110Chroma Meter was used to
collect color coordinate data from a separate preparation of
the 270 primary soil samples. The Minolta CR-110was a
handheld tristimulus colorimeter which .used diffuse
sample illumination and a 50 mIDdiameter sampling head
to integrate surface texture and color variation effects. Data
were obtained in the CIE Yxy format using the D6S
standard illuminant to simulate the spectral power
distribution of natural daylight (Billmeyer and Saltzman,
1981). Readings were taken on three replicates of the 30
Illinois test soils at three moisture tension levels (air dry,
0.033 MPa, and 1.5 MPa). The samples were prepared with
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Figure I-Mean spectral reflectance curves for Ade Loamy Sand
(SoliI) at three moisture tensionlevels. .
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a smoothed viewing surface in a 50 mm diameter x 10 mm
deep flat black sample cup. Periodic recalibration of the
meter against a reflectance standard showed no apparent
drift in the x and y chromaticity coordinates, but in some
cases a measurable drift (up to 1%) in the Y tristimulus
value. Meter output was relatively insensitive to
irregularities in the soil surface, as long as the distance
between sampling head and soil surface was held constant.
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DATA REDUCTION AND ANALYSIS

Unless specifically noted, all analyses used the carbon
values obtained by dry combustion, rather than the
Walkley-Black data. Calibrations were done with organic
carbon (rather than organic matter) as the dependent
variable, since carbon was the actual quantity measured
with the induction furnace.

The regression dataset of primary interest consisted of
all 30 test soils at the 0;033 MPa and 1.5 MPa moisture
tension levels, to bracket the soil moisture conditions likely
to be encountered during field operation of a soil organic
matter sensor. The air dry samples were not included in the
primary analyses as they would bias the regression toward
the drier end of the moisture content range. Separate
analyses of the data collected at each moisture tension were
also completed, to eliminate that part of the variability due
to soil moisture differences and to provide an indication of
the upper limit of predictive capability. .

Color Coordinate Data. Raw color coordinate data'
obtained from the Minolta Chroma Meter consisted of the
tristimulus value, Y, and the chromaticity coordinates, x
and y. Three other standard color coordinate sets - the
tristimulus values (X, Y, Z) and the CIELAB and CIELUV
uniform color coordinates (L*, a*, b*, and L*, u*, v*,
respectively) - were calculated using standard equations
(Billmeyer and Saltzman, 1981). A separate set of spectral
tristimulus values was calculated from the spectral
reflectance curves of the 270 primary soil samples, using
the weighted-ordinate method with points spaced every
5 nm from 380 to 780 om.(Binmeyer and Saltzman, '1981).
The CIE 1931 20 observer function and D6S illuminant
were used in the calculations, to correspond to the test
conditions provided by the Minolta Chroma Meter. The
spectral tristimulus values were used to obtain spectral sets
of chromaticity coordinates and CIELAB and CIELUV
coordinates.

Multiple regression of the colorimeter-derived and
spectra-derived color coordinates against soil organic
carbon content was accomplished using the PC-SAS
computer package (SAS Institute, Inc., Cary, NC). Multiple
linear and quadratic regressions were performed using the
color coordinates in each of the systems described above.
Logarithmic transformations of the color coordinate data
were also used in an attempt to discover any multiplicative
effects. .

Spectral Reflectance Data. The results reported by
Smith et al. (1987) were subjected to further analysis and
validation tests. They had used SMLR on these same
reflectance data to select the best wavelengths for
prediction in four-wavelength and eight-wavelength
models. The independent variables in these models
consisted of the optical density rOD, defined as
10glO(1/reflectance)]at wavelengths selected by an iterative
scanning program to maximize the correlations obtained.
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Smith et al. (1987) used the mean of the three replicate
spectral reflectance curves for analysis. Their application
of the four-wavelengthmodelto thesixty averaged1..5

and 0.033 MPa reflectance curves yielded an r2 of 0.81,
while the eight-wavelength model produced an r2 of 0.86.

In this study, the calibration equations obtained by
Smith et al. (1987) were applied to linearly independent
validation datasets (the spectral reflectance curves of the
individual replicate soil samples) to verify their predictive
capabilities. Also, their iterative scanning program was
modified by the addition of an outer loop to provide for
iteration of the starting wavelengths for the scan. This
allowed documentation of any variation in the prediction
wavelengths and correlations due to the initial conditions
for the iteration.

Partial least squares regression (PLS), implemented in
the Unsctambler package (CAMO A/S, Trondheim,
Norway), was used to analyze both the visible/NIR and the
NIR datasets. Because limitations in the analysis programs
required that the number of points per dataset be reduced
from 297 to less than 100, cubic spline interpolation was
used to produce daiasets with 5, 10, or 20 nm point
spacings.

Since soil color was thought to be a viable indicator of
organic matter content, major emphasis was placed on
analysis of the visible data (380-780 nm on a 5 nm
spacing) as a separate entity. A supplementary analysis of
the complete visiblelNIR dataset (380 to 1110 nm on a
10 nm spacing) was also done to see if extending the
sensing range would result in a better correlation to soil
organic carbon. Both the raw reflectance data and the
fonowing transformations of that data were used:

Optical density (OD) transformation:
10g1o(llreflectance)

Kubelka-Munk transformation:
(1-reflectance)2/2*reflectance

Square root transformation.

The OD transformation is an extrapolation of the Beer-
Lambert law, developed to quantify constituents present in
transmissive samples. The Kubelka-Munk transformation
is based on the theory of diffuse reflectance of a scattering
medium, and its proportionality to concentration is more
rigorously defined than that of OD. In many practical cases
both transformations have given equally good results,
particularly for NIR reflectance data (Birth and Hecht,
1987). The square root transformation, although not
physically based, had yielded good results in preliminary
tests. .

The NIR dataset (800-2580 om on a 20 om spacing) was
analyzed with PLS using raw reflectance data, OD
transformed data, and Kubelka-Munk transformed data.
Analyses were also done on subsets of the NIR data to
determine what reduction in predictive capability would be
seen if fewer individual reflectance readings with a wider
bandwidth were sensed. Supplementary analyses of the
NIR dataset documented performance of the prediction
equations at additional moisture tension levels intermediate
to the 0.033 MPa and 1.5 MPa calibration datasets.

In all PLS analyses, cross-validation techniques integral
to the Unscrambler analysis program were used to verify
the validity of the calibration equation. Outliers identified
by the program were iteratively eliminated from the
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FIgure 2-Fundamental metamer transformation of the mean spectral
reDec:tance curves for Ade Loamy Sand (SoU 1).

calibration step to obtain an improved fit; however, these
outliers were retained in the prediction step.

Principal Components Regression (PCR) was used to
analyze the optical density transformed visible and
visibleINIR datasets for the combined moisture tensions of
0.033 MPa and 1.5 MPa. The cross-validation and outlier
removal techniques used for PLS were also used in the
PCRanalysis.. . ",

Fundamental Metamer Data. Both the visible
reflectance data and the color coordinate data from the
Minolta Chroma Meter were transformed to the

, fundamental metamer representation (fig. 2) using the
methods of Cohen and Kappauf (1985). The fundamental
metamer (that part of the spectral function which stimulates .
the human color-sensing mechanism) is in some sense
intermediate between the spectral reflectance and color
coordinate representations of a visual stimulus. The
fundamentalmetameris uniquefor each color stimulus(as
are color coordinates),yet it contains informationat each
wavelength in the spectrum (as does the spectral
reflectance function).

PLS was used to analyze the fundamental metamer data
(380 to 780 om on a 5 om spacing) for the combined
datasel with soil moisture tensions of 0.033 MPa and
1.5 MPa. Cross-validation and outlier elimination were
used to obtain the most predictive model.

"

REsULTS AND DISCUSSION
SOIL PROPERTY DETERMINATION

The spectral reflectance curves (fig. 1) obtained at the
USDA, ISRL exhibited a difference in reflectance between
the overlapping portions of the visible and NIR spectra for
each sOilmoisture tension, due to sample presentation. An
open sample cup was used for the visible spectra, while a
quartz window covered the cup used for ~e NIR spectra,
resulting in lower readings.

Mean organic carbon obtained by dry combustion for
the 30 test soils is reported in Table 1. The duplicate
samples analyzed by dry combustion agreed within 0.1%
carbon in all cases. Walkley-Black organic matter, soil
texture and moisture content data determined by Womer

TRANsAcnONS OF 1HE ASAE



TABLE 2. Most predictive models selected by multiple regression
analysis of Mlnolta Cbroma Meter color coordinate data

. SEE =standard error of the estimate, in percent organic carbon
t Model terms: L., b* = coordinates from CIELAB color space

% C = percent organic carbon
Y= tristimulus value

x, y = chromaticity coordinates

(1989) for the samples analyzed at the USDA, ISRL are
also presented in Table 1.

EXPLORATORY DATA ANALYSIS

Color Coordinate Data. An analysis of variance
(ANOVA) procedure detected no significant differences in
color coordinates or moisture due to the three replications.
Multiple regression models (Table 2) were identified as
having the best predictive capability for the combined
0.033 and 1.5 MPa color coordinate data, and for the
individual moisture tensions. A multiple quadratic
regression using the L* (lightness) and b* (yellowness-
blueness) coordinates from the CIELAB uniform color

. space yielded the highest coefficient of determination (r2=
0.72) and the lowest standard elTOrof the estimate (SEE =
0.36% carbon), while maintaining significance of all tenns
in the model. The best statistically valid model obtained for
the Yxy system of color coordinates was linear in Y and x,
and quadratic in y. A quadratic regression using the x

TABLE 3. Most predictive models selected by multiple regression
analysis of color coordinate data calculated from soUspectral

reflectance curves

. SEE =standard error of the estimate, in percent organic carbon

t Model terms: L., a., b* = coordinates from ClELAB color space

% C = percent organic carbon
y = tristimulus value

x, y= chromaticity coordinates
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chromaticity coordinate was the best significant model at a
single moisture tension. Logaritlunic transfonnations of the
color coordinate data gave poorer results than the
un transformed data, suggesting the absence of pure
multiplicative effects. Results obtained with coordinates
from the CIELUV uniform color space were similar in
predictive capability and significance of model terms to the
results obtained with coordinates from the CIELAB
system.

Similar prediction models (Table 3) were applied to the
color coordinate data obtained from the spectral reflectance
curves. With the spectral data, a 4-term Yxy model (linear
in Y and x, quadratic in y) was the best predictor of organic
carbon. The best CIELAB model was quadratic in L* and
a* (the redness-greenness dimension), but the quadratic
L*b* model used for the colorimeter data was also a good
predictor. The quadratic model in the x chromaticity
coordinate was again the best predictor at a single moisture
tension.

Comparison of the predictive capability of the two data
sources (Tables 2 and 3) showed that higher correlations
were generally obtained with the color coordinates from
the handheld colorimeter than with the color coordinates
calculated from spectral reflectance curves. However, even
the best correlations found by color coordinate multiple
regression analysis were not high enough to pursue this
sensing method for development of a field organic matter
sensor.

Spectral Reflectance Data. The 4-wavelength and 8-
wavelength models developed by Sinith et al. (1987) were
used to predict the Walkley-Black organic matter content
for each replication of the data individually, as well as for
the entire dataset (Table 4). Although the 8-wavelength
model had the better predictive capability for the
calibration data, the 4-wavelength model was equally as
good or better for all measures of prediction in the
validation data. This indication of overfitting in the 8-
wavelength model would probably have been more

...'
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TABLE 4. Validation results for stepwise multiple linear
regression on 0.033 and 1.5 MPa moisture tension data

8-Wave- 4-Wave-

length length
Mode1 Model

Prediction Measure

t
f
.

.~

bias -alldata; 0.01 -0.01
bias - rep I data -0.06 -0.04
bias - rep 2 data 0.05 -0.01
bias - rep 3 data 0.02 0.01

. SEC (standard error of calibration) is the standard error of the
estimate in the calibration data, in percent organic carbon.

t SEP (standard. error of prediction) is the standard error of the

estimate in the validation data, in percent organic carbon.
:j: Bias is the difference between the predicted percent carbon

mean and the measured percent carbon mean.
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Model Sample moisture r2
tension

%C = f(L., b*,L.2, b.2)t 0.033 and 1.5 MPa 0.72 0.36

%C=f(Y,x,y,y2) 0.033 and 1.5 MPa 0.70 0.37

%C=f(x,x2) 0.033 and 1.5 MPa 0.68 0.38

%C=f(x, x2) 0.033 MPa 0.85 0.26

%C= f(x, x2) 1.5MPa 0.62 0.42

%C=f(x,x2) air dry 0.56 0.45

Model Sample moisture r2 SEE*
tension

%C =f(L., b., L.2,b. 2)t 0.033 and 1.5 MPa 0.62 0.42

%C= f(L., a.,L.2,a. 2) 0.033 and 1.5 MPa 0.64 0.41

%C = f(Y, x,y, y2) 0.033 and 1.5 MPa 0.65 0.41

%C=f(x,x2) 0.033 and 1.5 MPa 0.59 0.44

%C= f(x,x2) 0.033 MPa 0.84 0.28

%C=f(x,x2) 1.5MPa 0.51 0.48

%C= f(x, x2) air dry 0.58 0.44

Calibration Step
Coeff. of Determination c(r2) 0.86 0.81
Std. Error of Calibration (SEC). 0.28 0.32

Validation Step
SEP -all datat 0.36 0.34
SEP - rep I data 0.36 0.33
SEP - rep 2 data 0.39 0.36
SEP - rep 3 data 0.34 0.34



apparent if a completely independent validation dataset had
been used.

The poorer predictionsobtained with the 8-wavelength
model could be explained by examination of the calibration
equation. The 8-wavelength model was:

OMC = 1<0+ kl '" OD424.o- OD808.o
OD,7,.2 - OD548.8

+ k2 '" ODI021.6 - OD1019.2
OD8I7.6 - ODs20.0

)
}

where
OMC= soilorganicmattercontent.%.
kn = multipleregressioncoefficients.
ODn = optical density at wavelength n.

. specified in nm.

The numerator and denominator in the first quotient term
were composed of the difference in OD at two distinct
parts of the curve. However. the numerator and
denominator in the second quotient term were both
composed of the difference in OD between two adjacent
points on the curve. The OD at these adjacent points never
differed by more than 11 'times the digital resolution to
which the data was recorded. so the second quotient term
had a low signal-to-noise ratio and poor predictive
capability to other than the calibration data. The 4-
wavelength model. described by equation I with k2 set
equal to zero. avoided the noise problems caused by the
second quotient term in the eight-term model.

The prediction wavelengths selected by the iterative'
scanning program and the correlations obtained were found
to be dependent on the seed (initial condition) wavelengths.
Program runs using the 0.033 and 1.5 MPa visiblelNlR
dataset with 20 different sets of initial conditions chose 17
different sets of wavelengths as the optimum. with
correlations ranging from r2 = 0.67 to r2 =0.81. Some
degree of robustness in the wavelength selection process
was evidenced. as the wavelengths selected for the five
best prediction equations were very similar. The numerator
wavelengths were chosen near the two ends of the visible
range. and the denominator wavelengths were chosen in

) TABLE S. Best sets of four prediction wavelengths
for stepwise multiple linear regression on 0.033 aDd

1.5 MPa moisture tension data

. Wavelengths of absorbances used in the prediction
equation:

OMC=k+k . ool-~0 I
~ -004

where: OMC =soil organic matler cpntent, percent

<Do =optical density at wavelength n
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TABLE 6. Summary of partial least squares and principal
components regression results with the vlslble-NIR dataset (380.

1110 nm) at moisture tensions orO.033 and 1.5 MPa

Numberof
Factors.

(1)

Visible. I.S MPa

Reflectance 9 5 0.76 0.33 0.40

Optical density transfonn 7 7 0.82 029 0.30

* The maximum numbe,of factors valid by cross-validation. and the

number of factors necessary to achieve an SEP within 0.01 of the
minimum.

t SEC (standard enor of calibration) is the standard enor of the

estimaJe in the calibration data, in percent organic carbon.
*SEP (standard enor of prediction) is the standard enor of the

estimate in the validation data, in percent organic carbon.

§ All analyses by partial least squares regression unless denoted by PCR

(principal components regression).
I Visible analyses included data from 380-780 nm.

the yellow-green range from 530 to 580 nm (Table 5).
Partial least squares (PLS) regression on the visible/NIR

(380-1110 nm) reflectance data for 0.033 and 1.5 MPa
moisture tensions yielded cross-validated correlations
(Table 6) slightly better than the SMLR results obtained
with the iterative scanning program. Correlations obtained
when considering the visible (380-780 nm) data alone were
slightly lower. As was the case with the color coordinate
data. the 0.033 MPa moisture tension data were better
correlated with organic carbon than were the 1.5 MPa
moisture tension data. In general. the optical density (OD)
transformed spectral data were more highly correlated with
organic carbon than were the raw reflectance data or the
other transformations. If similar correlations were obtained.
the OD data required the extraction of fewer factors. In
many of the datasets analyzed. the later factors extracted by
the model were not major contributors to reducing the
standard error of prediction (SEP. the' standard error of the
estimate in the validation data). and a smaller number of
factors could provide an SEP within 0.01% organic carbon
of the minimum (Table 6).

TRANSAcnONS OFTIlE ASAE

Wave- .Wave- Wave- Wave-
r2 length 1* length 2 length 3 length4

(nm) (nm) (nm) (nm)

0.81 424.0 808.0 5752 548.8
0.79 872.8 424.0 563.2 5752
0.78 436.0 800.8 553.6 5752
0.77 4312 764.8 541.6 5752
0.76 817.6 4072 532.0 575.2

SEP
within

Total 0.01
Dataset Valid ofmin. r2 SECt SEP:j:

Visibie-NIR. 0.033 & 1.5 MPa

Optical density transfonn§ 10 6 0.81 0.30 0.32
Optical density. PeR 11 7 0.76 0.33 0.33

Visible. 0.033 & 1.5 MPall
Reflectance 10 9 0.72 0.36 0.39

Optical density transfonn 9 S 0.80 0.30 0.33
Kubelka-Munck transfonn 9 S 0.71 0.32 0.37
Square root transfonn 10 8 0.79 0.31 0.35
Optical density. PCR 10 6 0.76 0.33 0.33

Fundamental metamer from 3 3 o.so 0.48 0.48
spectral data

Fundamental metamer from 3 3 0.50 0.47 0.47
color coordinate data

Visible. 0.033 MPa
Reflectance 9 8 0.87 024 0.30
Optical density transfonn S 3 0.85 027 027



TABLE 7. Summary of partial least squares regression results with
the NIR dataset (800-2580 nm) at moisture tensions of

0.033 and 1.5 MPa

Numberor
Facton*

* The maximum number of factors valid by cross-validation. and the

number offactors necessary to achieve an SEP within 0.01 of the
minimumSEP.

t SEe (standard enor of calibration) is the standard error of the

estimare in the calibration data, in percent organic carbon.

*SEP (standard enor of prediction) is the standard enor of the

estimare in the validation data, in percent organic carbon.
1 Maximum number of factors which could be extmcted by the

program. although additional factors may be valid. Results

presented are based on this number of factors.

The combination of the NIR (800-2580 om) dataset and
PLS analysis yielded the best conelations between organic
carbon content and soil reflectance properties of all the
dataset/calibration method combinations tested (Table 7).
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A maximum r2 of 0.92 and a minimum SEP of 0.20%
carbon were obtained (fig. 3) using OD transformed NIR
datasetswitheithera 60 DIDor a 40 DIDspacing,createdby
averaging the adjacent two or three spectral points,
respectively, in the initial 20 om spacing PLS dataset. Most
of the predictive capability of the data was retained after
widening the data point spacing to 100 om and eliminating
points at wavelengths contributing little to the regression
(Table 7). An r2 of 0.91 and an SEP of 0.21 were obtained
when only 15 of the original 90 independent variables were
retained in the model.

The NIR spectra provided better predictions of organic
carbon than did the visible spectra by removing some of
the effects of soil moisture on soil reflectance properties.
Spectral reflectance in the 1700-2000 om region has been
shown to be strongly conelated with soil moisture content
(Dalal and Henry, 1986), due to the presence of a strong
water absorption band c~ntered at approximately 1940 om
(fig. 1). Examination of the PLS output showed that points
in the 1940 nm water absorption band had the most
influence on the factors extracted from the data, thus
compensating for decreases in soil reflectance due to
increased soil moisture. Another advantage of the NIR.data
was that noise due to the quantization of the data was a
smaller fraction of the NIR spectra than of the visible
spectra, due to die increased soil reflectance at the longer
wavelengths

Linear principal components regression on the OD
transformed visiblelNIR dataset provided slightly less
predictive capability than did PLS {egression on the same
data (Table 6), and required the extraction of more
regression factors.

Fundamental Metamer Data. PLS analysis of the
fundamental metamer data showed this representation to
have less predictive capability than reflectance or optical
density datasets for the same wavelength and moisture
tension range (Table 6). Only three factors were valid for
the fundamental metamer data from either source
(colorimeter or spectral reflectance curves), because the
fundamental metamer has a rank of only three (Cohen and
Kappauf, 1985). Visual comparison of the fundamental
metamer curves for the 30 soils (for example, fig. 2), also
revealed the low dimensionality of the data. All the cUrves
had the same basic shape, with the only differences being
in the heights of the two peaks and of the intermediate
trough.

r-I

..

SELECTION AND REFINEMENT OF PREDICTION METHOD

Based upon the above results, the combination of NIR
optical density transformed data and PLS calibration was
selected as having the most promise for the prediction of
soil organic carbon content. The NIR data exhibited a
reduction in standard error of over 30% when compared to.
visible spectral reflectance and color da~. PLS generally
yielded slightly better calibrations than SMLR andPCR
where all three methods were used on the same data.
Additionally, the PLS software allowed calibrations to be
generated with the least computational effort.

Accuracy of the selected NIRJPLS method appeared
acceptable for the practical measurement of soil organic
carbon. Published data quantifying infield organic carbon
variations are rare, but carbon variations measured within
80 m in an apparently uniform Central Illinois field

..
I
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SEP
Number within

of points TOIaI 0.01
Dataset used valid ofmin. SECt

20 om spacing
Reflec:tance 90 11 11 o.ss 0.23 0.24

OpIicaldensity 90 121 10 0.91 0.20 Q.22
Kubelka-MuncIc 90 11 10 0.79 0.31 0.33

40 om spacing
Optical density 43 14 12 0.92 0.18 0.20

60 om spacing
Optical density 28 171 12 0.92 0.18 0.20

Optical density, 17 13 11 0.91 0.20 0.21
II points deleted

OpIical density, IS 13 11 0.91 0.20 0.21

13 points deleted

100 om spacing

Optical density 16 13 12 0.90 0.22 Q.22

Optical density, 13 12 11 Q.89 0.22 0.23

3 points deleted



TABLE 8. Summary of partial least squares regression results for reducing the
range or the NIR (800..2550 nm) optical density transformed dataset at moisture

tensions of 0.033 and 15 MPa

Numberof
Facuxs.

~

(Sudduth.1989)were approximatelyten times as large as .
the SEP.s obtained with this method. .

A sequence of analyses was completed to investigate the
effect of a reduced wavelength range on the predictive
capability of the regression. Since the optical density
transformed NIR datasets with 40 nm and 60 nm data
spacings were the most predictive over the full wavelength
range (Table 7). they were chosen for further analysis. As
data points were iteratively eliminated from the ends of the
data range. the reduction in predictive capability was
recorded (Table 8). For both datasets. the minimum range
of wavelengths possible before the prediction degraded (in
terms of an increase in the SEP of more than 0.01 %
organic carbon from that of the full-range data) was
similar. For the data on a 40 nmspacing. that range was
1730 to 2370 nm (17 data points). with an SEP of 0.21. For
the 60 nm data. the range was 1720 to 2380 nm (12 data
points). with an SEP of 0.20.

The predictive capability of the 60 nm dataset ranging
from 1720 to 2380 nm was verified for a range of
additional moisture tensions. The prediction equation
developed using the 0.033 and 1.5 MPa data was applied to
a supplementary set of data collected on six of the test soils
at intermediate moisture tensions of 0.1. 0.4. 0.7. and
1.0 MPa. yielding an SEP of 0.18% carbon. Extrapolation
of the prediction equation developed with the 0.033 and 1.5
MPa data to the air dry data for the 30 soil samples did not
give good results. with an SEP of 0.35 percent carbon.
Inclusion of the data for air dry soil along with the 0.033
and 1.5 MPa moisture tension data in the calibration step
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produced better correlations. with an r2 of 0.86 and an SEP
of 0.25.

CONCLUSIONS
1. Color coordinate data were not highly predictive of

the organic carbon content of illinois soils. with a
maximum r2 of 0.72 and a minimum standard error
of 0.36% carbon obtained for combined 0.033 and
1.5 MPa moisture tension data obtained with a
handheld colorimeter.

2. The fundamental metamer transformation of soil
reflectance or color coordinate data was not
predictive of organic carbon content.

3. An 8-wavelength model obtained by stepwise
multiple linear regression (SMLR) was found to be
inappropriate. due to overfitting of the calibration
data. A valid 4-wavelength SMLR model yielded an

. r2of 0.81 and a standarderrorof prediction(SEP)of
0.36. '

4. Partiai least squares (PLS) regression on visible and
near infrared (NIR) data from 380'to 1110 nm
yielded a maximum validated r2 of 0.81 and a
minimum SEP of 0.32 for the combined 0.033 and
1.5 MPa data.

5. Data obtained at 0.033 MPa moisture tension were
more predictive of carbon content than data at
1.5 MPa or the two datasets combined.

6. The visiblelNIR dataset (380-1110 nm) was only
marginally more predictive of organic carbon than
was the visible (380-780 nm) dataset.

7. Optical density (OD) transformation of the soil
reflectance data enhanced its organic carbon
predictive capability.

8. NIR OD transformed data (800-2580 nm) and PLS
analysis yielded the best predictions of organic
carbon with the combined 0.033 and 1.5 MPa data.

9. Excellent correlation (r2 = 0.91.SEP= 0.20)was
retained when the NIR data were smoothed to a
60 nm data point spacing and the wavelength range
reduced to 1720-2380 nm. for a total of only 12 data
points used. Similar correlations were obtained with
a 40 nm data spacing and a slightly smaller
wavelength range.
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