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ABSTRACT; An analytical solution for regional flow in a converging or wedge- 
shaped aquifer is given. Darcy's law and the continuity equation, expressed in 
cylindrical coordinates, were solved for flow in a vertical cross section of a two- 
dimensional aquifer. The lower horizontal boundary and the vertical boundaries 
at r = 0 and r = a are no-flow boundaries. The upper horizontal boundary is a 
prescribed head consisting of a linear increase with radius onto which is superim- 
posed a sine wave. In plan view, the streamlines are radially convergent. The 
converging system shows a concentration of streamlines near the divide and a 
spreading of streamlines near the apex due to the prescribed potential on the upper 
boundary that limits the rate of water movement toward the apex. The effect of 
relief on local flow systems is limited, especially in the region near the valley bottom. 

INTRODUCTION 

Knowledge of pat terns  of ground-water  flow is needed  to unders tand and 
predict  the movement  of agricultural  nutrients and pesticides through the 
soil profile and the ground-water  system of an upland watershed.  Up land  
watersheds are often best  described in plan view as a sector of a circle ra ther  
than a rectangular  element.  Shallow aquifers underlying these upland wa- 
tersheds often conform to the surface boundaries .  Surface-water  hydroiD- 
gists have noted this difference in geometry  and have developed appropr ia te  
kinematic wave models  to describe the surface runoff. They have found the 
response of a converging watershed to be quite different from the response 
of a rectangular  watershed.  Notable  are the works of Woolhiser  (1969), 
Woolhiser  et al. (1971), Singh and Woolhiser  (1976), and Singh and Shel- 
bourne (1979). 

Ground-water  flow can be described by a diffusion equation,  whereas 
surface flow is described by a wave equation,  As  a result,  solutions for 
surface flow are not directly applicable to the ground-water  problem.  One 
can infer, however, that significant differences will be exhibited in the ground- 
water flow when comparing flow in a rectangular  aquifer-with flow in a 
converging aquifer. Numerical  model ing of such watersheds,  using general  
modeling packages,  is best  done using a variable grid spacing, Pricketf and 
Lonnquist  (1971) point  out,  however ,  that  definit ion of  the variable grid 
spacing is not  necessarily obvious. 

A theoret ical  analysis of a two-dimensional  regional aquifer was described 
by T6th (1962, 1963). His work  has been widely used as a conceptual  basis 
for describing expected behavior  (Wang and Anderson  1982) and for in- 
terpreting observed behavior  of ground water  in small watersheds (Pionke 
et al. 1986). More  general  research,  using both analytical and numerical  
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solutions, for regional ground-water movement in rectangular, three-di- 
mensional, nonhomogeneous, anisotropic basins was done by Freeze and 
Witherspoon (1966, 1967, 1968). This work is not, however, directly ap- 
plicable to converging aquifers. An analytic solution, similar to that of T6th 
(1963), would be helpful in interpreting ground-water movement in con- 
verging upland watersheds and will help in defining the grid spacing for 
numerical models. 

BASIC ASSUMPTIONS 

Following T6th (1963) and Freeze and Witherspoon (1966), it is assumed 
that there exists a hydrologic unit (the ground-water basin) that contains 
the entire flow paths followed by the ground recharging the basin. It is 
bounded on the bottom by an impermeable layer and on the sides by stream- 
lines across which there is no flow. These side boundaries describe a pie- 
shaped wedge in plan view. The formation above the horizontal, imperme- 
able lower boundary is homogeneous and isotropic. The hydrologic unit is 
bounded on the top by the water table. This upper boundary of the saturated 
flow system is known and, on a long-term average basis, can be treated as 
steady state. In the analytical solution described here the upper boundary 
condition is specified along a horizontal plane, and the potential representing 
the water table is specified along this plane. Freeze and Witherspoon (1966) 
gave an extensive defense of this assumption. In the work that follows, 
radial symmetry is also assumed. 

MATHEMATICAL MODEL 

Application of Darcy's law and the continuity equation for steady, axi- 
symmetrical, homogeneous, and isotropic flow results in the following form 
of the Laplace equation 

32h 1 Oh O2h 

Or 2 + + = 0 r Or Oz 2 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ( l )  

where h = hydraulic head at a given point; r = radial coordinate; and z 
= vertical coordinate. Fig. 1 depicts the geometry under consideration. 

The boundary conditions are: The radial velocity is zero at zero radius 

N 

n 
~'-~N 

~d 

h = Zo = al r + b sin(bl r) 

[p = rJa] 

AQUIFER 

r = a  

[p = 1] 

FIG. 1. Side View. Aquifer is Wedge-Shaped in Plan View 
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~h 
VrLr=O = K t r i o  ---- 0 f o r  0 <-- z --< Zo . . . . . . . . . . . . . . . . . . . . . . .  ( 2 )  

the radial velocity is zero at the outer boundary,  r -- a 

ah 
"Url r = a  = g -fir [r=a = 0 for 0 --< z ----- Zo . . . . . . . . . . . . . . . . . . . . . . .  (3) 

and the vertical velocity is zero along the impermeable bot tom boundary,  
z = 0  

Oh 
vz[z=o = K ~zz [z=o = 0 for 0 - r -< a . . . . . . . . . . . . . . . . . . . . . . .  (4) 

also, due to the known, quasi-steady-state water table, the potential at 
elevation z = Zo is given by 

h[z=zo = Zo + air + b sin(blr) for 0 -< r -< a . . . . . . . . . . . . . . . . .  (5) 

where vr = the radial velocity of the ground water; Vz = the vertical velocity 
of the ground water; K = hydraulic conductivity; Zo = the depth to the 
horizontal impermeable boundary;  al = tan cq, ~xl = angle of slope; b = 
amplitude of the sine wave; bl = 2"rr/h, which is the frequency of the sine 
wave; and h = the period of the sine wave. The boundary condition at z 
= Zo [(5)] is the same as that used by T6th (1963). It was used to facilitate 
comparison with the rectangular case. The term al was considered by T6th 
(1963) to represent the general slope of the valley. The sine term was 
considered to describe topographic relief and was interpreted as representing 
local stream systems. This pattern of local stream systems is not typical for 
converging upland agricultural watersheds. Use of terrace systems for ero- 
sion control is common,  however, and infiltration of water stored behind 
the terraces can lead to a potential similar to that described by (5). 

It is convenient to express these relations in nondimensional form by 
using "q = h/zo, p = r/a, and ~ = Z/Zo. The basic equation [(1)] becomes 

02"q + 1 O'q a2 02rl 0 (6) 
2 + - - 7  = " . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

with boundary conditions 

a~ [o=o = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (7) ap 

&q 1~=1 = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (S) 
0p 

0~ I~=o = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (9) 

"q1r = 1 + otp + 13 sin(o~p) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (10) 

where ot = a~/zo; f3 = b/zo; and co = bza = 21ra/X. 
The general solution of (6)  with boundary conditions (7), (8), and (9) 

can be determined using the method of separation of variables following 
Carslaw and Jaeger (1959). The solution of the radial portion of the equation 
is in terms of Bessel functions, whereas the solution of the z portion of the 
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equation is in terms of hyperbolic functions. The general solution can be 
written in the following form: 

where J0(hnp) = the zero-order Bessel function. The hn are zeros of the 
first-order Bessel function, that is 

J~(kn) = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (12) 

Abramowitz and Stegun (1964) provide the following expansion by which 
values of k. can be determined 

3 12 9452.8 11079696.46 
a n ~-~ 1) - -  ~ "Jr- ( 81 ) )3  (81))5 + (8V) 7 + "'" . . . . . . . . . . . .  (13) 

where v -- (n + 1/4)~r; and 1 ~ n < oo. 
The constants Cn are found using the upper boundary condition [(10)]. 

Eq. (11) is written for ~ = 1 and equated to the boundary condition [(10)]. 
Both sides of the equation are multiplied by pJ0(hkp) dp and integrated. 
The result is 

C, = An + Bn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (14) 

where 

A n = 

and 

B n -= 

Let 

p Jo(Xnp) do 

[Jo(Xn)] 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (15) 

p sin(cop)Jo(hnp ) d p  

[Jo(X.)V 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (16) 

D,  = - ( A ,  + B,) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (17) 

. . . . . . . . . . . . . . . . . .  ( 1 8 )  

so that (11) can be written 

~q = 1 + 2 1 D n  1 c o s h ( - ~ )  
Jo(X.p) 

The no-flow boundary conditions [(7), (8), and (9)] determine the form 
of solution of the problem and the characteristic values h,,, whereas the 
boundary condition [(10)] that specifies the configuration of water table 
determines the ground-water flow pattern. The flow pattern will vary with 
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the slope c~ and the sine curve parameters  13 and ~. The coefficients A n and 
Bn represent the effect of slope and sine curve, respectively. 

For homogeneous,  isotropic, potential  flow, nondimensional velocities 
can be determined using Darcy 's  law. These nondimensional velocities are 
defined as 

v, _ z0 0~1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (19) 
vp - k a Op 

v. aT I 
v ~ -  k - at  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (20) 

For an axisymmetrical potential  flow, the Stokes stream function is de- 
fined as 

d[q~(r, z)] = r(vz dr - vr dz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (21) 

The relation for the s t ream function is obtained by dividing (21) by k- a.  z0, 
and substituting (19) and (20) into the result. This leads to the nondimen- 
sional form 

d[ , (p ,  {)1 = p ~ -  do - - -  - -  d{ . . . . . . . . . . . . . . . . . . . . . . . . .  (22) 
a Op 

Then 

0qJ 
07 = P 

l'z~\~a) 0-~-~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (24) 0# 
0-~ = - P 0p 

Upon integration, the nondimensional s t ream function is 

sink ( - ~ )  
.& 

* = Z (An + B,,) pJ , (k,p)  . . . . . . . . . . . . . . . . . . . . . .  (25) 

cosh 

where O = nondimensional s t ream function, and J1 = first-order Bessel 
function. 

NUMERICAL RESULTS 

To analyze the effect of the converging aquifer (17) and (18) were eval- 
uated for the same examples selected by T6th (1963). Zeros  of the first- 
order Bessel function were evaluated using (12). The hyperbolic-cosine 
Bessel function series [(18)] is not rapidly convergent,  so more  than 100 
terms were regularly summed to attain the desired accuracy. The results 
are displayed graphically in Figs. 2 -10 .  

The nondimensional hydraulic head,  xl, is plotted as dashed lines. Stream- 
lines, determined using (25), are plotted as solid lines. Three aspect ratios 
(zo/a) 0.05, 0.25, and 0.50 were considered. These correspond to shallow, 

316 



z 
o 
I.-= 

w m 1.0 

~ ' ~  0.5 

-~ 0.0 (/) 
0.0 0.1 0.2 0.5 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

DIMENSIONLESS RADIUS p 

FIG. 2. Flow System for Aspect Ratio zo/a = 0.05; Slope aJa = 0.02; and Ampli- 
tude b/a = 0 , 0 0 2 5  
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FIG. 3. Flow System for Aspect Ratio zo/a = 0.05; Slope aJa = 0.02; and Ampli- 
tude b/a = 0.01 
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FIG. 4. Flow System for Aspect Ratio zo/a = 0.05; Slope al/a = 0.05; and Ampli- 
tude b/a = 0.0025 
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FIG. 5. Flow System for Aspect Ratio zo/a = 0.05; Slope ada = 0.05; and Ampli- 
tude h/a = 0.01 
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FIG. 6. Flow System for Aspect Ratio zola = 0.25; Slope aQa = 0.05; and Ampli- 
tude b/a = 0.01 
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FIG. 7. Flow System for Aspect Ratio zo/a = 0,50; Slope al/a = 0.02; and Ampli- 
tude b/a = 0.0025 
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moderate ,  and thick sa tura ted  zones and to the aspect ratios used by T6th 
(1963)�9 For  the water  table configuration,  that  is, the upper  boundary  con- 
dition, two slopes (al /a = a z d a  = 0.02 and 0.05) and two relative ampli tudes 
(b/a = [3a/zo = 0.0025 and 0.01) were used. Again ,  these correspond with 
the values used by Tdth.  

Three  different flow systems are  apparent ,  as they were for Tdth (1963). 
These flow systems are as follows. 

1. A local system in which flow has its recharge at a topographic  high 
and its discharge at an adjacent  topographic  low. Streamlines originate in 
the positive por t ion of the sine curve and terminate  in the adjacent  negative 
portion. Local  flow systems are apparent  in each of the geometr ies  analyzed.  

2. In termedia te  systems are those in which streamlines span one or  more  
topographic lows. In termedia te  flow systems are apparent  on the modera te  
and thick saturated flow geometries.  

3. Regional  systems are those in which the recharge area  is at the divide, 
where r = a, and the discharge region is at the outlet  of the watershed,  
where r = 0. Mathematical ly ,  one streamline should follow the boundary  
of the aquifer, and so it would define a regional  flow. Regional  flow is very 
limited in the thin sa turated zone case, though regional  flow can be expected 
in Fig. 4. 
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FIG. 8. Flow System for Aspect Ratio zola = 0.50; Slope ada = 0.02; and Ampli-  
tude b/a = 0.01 
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FIG. 9. Flow System for Aspect Ratio zo/a = 0.50; Slope al/a = 0.05; and Ampli- 
tude b/a = 0.0025 

The effect of thickness of the saturated layer on the flow pattern can be 
analyzed by considering Figs. 5, 6, and 10. All parameters are held constam 
except the aspect ratio. For the shallow case (Fig, 5) the only prevalent 
flow system is local. For the moderate and thick aspect ratios, intermediate 
and regional systems appear. In general, thicker saturated layers lead to 
greater flow in the regional system. 

The influence of general topographic slope is given by al/a = c~zo/a, 
whereas topographic relief is indicated by the amplitude of the sine wave, 
f3zo/a. The influence of slope can be analyzed by comparing Fig. 2 with Fig. 
4 and Fig. 7 with Fig. 9. Increases in slope result in a greater potential 
gradient, eventually overcoming the local gradient caused by the sine wave. 
This leads to a breakdown of the local flow and to an increased significance 
for the intermediate and regional flow systems. Conversely, an increase in 
the topographic relief tends to enhance the local flow system to the detriment 
of the intermediate and regional systems�9 This is demonstrated in Figs. 4 
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FIG. 10. Flow System for Aspect Ratio zo/a = 0.50; Slope ada = 0.50; and Am- 
plitude b/a = 0.01 

and 5. Obviously, the amplitude, 13, and frequency, w, of the sine curve 
determine the local flow system of the ground-water movement,  and the 
slope a determines the regional flow system of the ground-water movement. 

These observations agree, in general, with those of T6th (1963). There 
are, however, significant differences. The flow pattern is distorted from that 
of T6th (1963) with the streamlines closer together at the divide (r -- a) of 
the convergent aquifer, but toward the apex the streamlines are spread 
farther apart. These differences, which are more apparent with the moderate 
and thick saturated zones and with steeper valley slopes, suggest that the 
radial distance over which regional recharge occurs is relatively small and 
the radial distance over which regional discharge occurs is relatively large. 
In the T6th (1963) case, for regional flow, the recharge and discharge in- 
tervals are the same. This occurs because, in plan view, the streamlines are 
straight and parallel, and the areas over which recharge and discharge occur 
must be equal to satisfy continuity. The areas must also be equal in the 
radially covergent case in order to satisfy continuity. In this case, the bound- 
ary between equal areas is r/a = 2 -0.~ = 0.707. This forces a closer spacing 
of streamlines in the regional recharge region than in the regional discharge 
region. 

In the examples with the moderate and thick saturated zones (Figs. 6 -  
10), the intermediate flow system is more highly developed than in the T6th 
(1963) case. In addition, this intermediate flow system is displaced upslope. 
This contributes to the expanded discharge distance. 

These general observations can also be interpreted in terms of upland, 
terraced watersheds. Terrace systems that impound water can result in the 
equivalent of topographic relief described by the sine wave. A detrimental 
effect of a local flow system is seepage at the toe of the terrace, a problem 
requiring installation of a drainage system. A regional flow system may 
maintain basefiow in a stream draining the watershed. The bank seepage 
producing this flow and changes in that seepage can serve to destabilize the 
bank leading to increased soil loss. 
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CONCLUSIONS 

This analysis indicates that the gross flow patterns are similar for the T6th 
(1963) case and for converging aquifers. There are, however, distinct dif- 
ferences. The flow patterns for the converging systems show a concentration 
of streamlines near the divide and a spreading of streamlines near the apex. 
This is due to the prescribed potential on the upper boundary that limits 
the rate of water movement  toward the apex. 

Results for the converging aquifer indicate that the effect of relief on the 
local flow system is decreased near the valley bot tom compared to that for 
the rectangular aquifer. For larger aspect ratios, the intermediate flow sys- 
tem is more highly developed, and it is displaced upslope. 
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APPENDIX II. NOTATION 

The following symbols are used in this paper: 

a = radius of outer boundary;  
as = t an(a0 ;  
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b z 

b 1 = 
h =  

Jo = 
J1 = 
K =  

r = 

7.) r ~ -  

z = 

z 0 

oL = 

ol. 1 

~ =  
~ =  

= 
k = 

~k n ~-- 

p = 
~ =  

amplitude of sine wave; 
27r/X, frequency of sine wave; 
hydraulic head; 
zero-order Bessel function; 
first-order Bessel function; 
hydraulic conductivity; 
radial coordinate; 
radial velocity; 
axial velocity; 
axial or vertical coordinate; 
thickness of aquifer; 
al/z0; 
angle of slope; 
b/zo;  
Z/Zo; 
h / zo ;  
period of sine wave; 
zeros of first-order Bessel function; 
r /a;  

nondimensional stream function; and 
b l a  = 2~ra /k .  
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