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Abstract 

Site-specific crop management (SSCM) aims to improve production efficiency by adjust- 
ing crop inputs, especially fertilizers and agro-chemicals, to varying local conditions within 
a field. Sensors are needed to obtain site-specific data on factors affecting crop growth and 
yields, such as nutrient status, weed pressure, soil moisture status, landscape position, soil 
organic matter (SOM) content, soil acidity, and depth to a restrictive layer. 

Two SOM sensors have been licensed for commercial development: (I) a single- 
wavelength sensor that must be recalibrated for the soils and moisture conditions that 
prevail at the time of use, and (2) a multiple-wavelength sensor which can utilize a single 
calibration to predict SOM over a range of soil moistures and a range of soil types that occur 
within a geographical range of several hundreds of kilometers. The single-wavelength sensor 
requires operator acceptance of the need for frequent recalibration, but is relatively inex- 
pensive and rugged. The multiple-wavelength sensor uses a single calibration applicable over 
a broader range of soil types and soil moistures, and can also be used to sense soil moisture 
and cation exchange capacity (CEC), but uses complex technology. A simple inexpensive 
sensor that can classify soils according to soil moisture has also been developed. Sensors 
for other soil parameters are being sought, and progress has been reported on nutrient and 
depth-to-claypan sensing. 

Keywords: Soil organic matter; Soil nitrate; Soil moisture; Depth-to-claypan; Cation1 ex- 
change capacity 

1. Introduction 

Present management practices, such as using mean soil fertility level and yield 
goals, assume that the soil within a single field is homogeneous. In reality the soil in a 
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field is heterogeneous and large variations may be encountered within a single field. 
Site-specific crop management (SSCM) aims to improve production efficiency by 
adjusting crop inputs, especially fertilizers and agro-chemicals, to varying conditions 
within a field. Input application may be based on any factor or combination of 
factors affecting crop growth and yields, such as nutrient status, weed pressure, 
soil moisture status, landscape position, soil organic matter (SOM) content, soil 
acidity, or depth to a restrictive layer. Today, low-cost powerful computers, real-time 
controllers, accurate navigational systems, and developments in electronic sensors 
have been combined to provide the technology necessary to make SSCM a reality 
(Auernhammer and Muhr, 1991). 

Measurement of the soil properties that affect plant growth is a basic task in 
SSCM. The spatial and temporal intensity at which each property must be measured 
is a function of its variability. Some parameters, such as soil nitrate content and 
soil moisture content, can change rapidly (both spatially and temporally) and must 
be measured in real-time or near real-time to be useful for input control. Other 
parameters, such as organic matter content and depth to a restrictive soil layer (such 
as a claypan) will vary over a much longer time frame, and can be measured off-line 
on a multi-year frequency. Likewise, spatial measurement intensity can be related 
to the spatial variation in the property being measured. Often it may be necessary 
to sample initially on a fine mesh to define the spatial variability. Depending on 
the variability, subsequent measurements may then be made on a coarser scale to 
provide the information needed. 

Electronic, automated sensing of soil properties is essential for efficient imple- 
mentation of SSCM strategies. Although many soil properties can currently be 
quantified by traditional methods (such as col.lecting soil samples for analysis of nu- 
trient levels), widespread adoption off SSCM will depend on automation to improve 
the efficiency of the soil property analysis process. A number of soil properties 
have been the subject of recent sensor research, including soil moisture for planting 
depth control (Carter and Chesson, 1993), soil texture (Liu et al., 1993), nitrate 
concentration (Adsett and Zoerb, 1991), and :SOM (Shonk et al., 1991, Sudduth and 
IIummel, 1993a, b). Examples from our work on the development of SOM sensors 
utilizing visible and near infrared (NIR) light reflectance are discussed. Research 
experiences in sensing of other soil properties, including moisture and cation ex- 
change capacity (CEC) using light reflectance, soil nutrients using ion selective field 
effect transistors (ISFETs), and sensing the depth-to-claypan i using electromagnetic 
induction (EM) methods of measuring soil conductivity, are also presented. 

2. SOM sensing 

In midwestern U.S. crop production, many producers use soil-applied herbicides. 
Some herbicides are adsorbed by SOM, requiring higher herbicide rates to obtain 
the desired level of weed control. In fields having varying SOM levels, the herbicide 
application rate might be adjusted according to SOM levels to reduce pesticide use. 

1 A high-clay subsurface soil layer common to large areas of midwestern U.S. 
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The general observation that soils, with greater organic matter contents appear 
darker formed the basis of the concept that electro-optical sensing of SOM might be 
feasible (Alexander, 1969). Researchers have investigated a number of approaches 
to automating this general concept, with varying degrees of success. Problems have 
occurred because soil color and reflectance are a function of properties such. as 
moisture, texture, mineralogy, and parent material, as well as SOM. 

Optical sensing of SOM has been accomplished with color data, and with wide- 
band and narrow-band spectral reflectance data. Soil color properties correlated 
with SOM have included the Munsell coordinates of hue, value, and chroma (Stein- 
hardt and Franzmeier, 1979), as well as a number of Commission Internationale 
de 1’Eclairage (CIE) color space coordinates (Page, 1974). In general, color has 
been a good estimator of SOM only when limits were imposed on the variability 
of the other soil parameters which affect soil reflectance. A variety of data types 
and calibration methods have been used to correlate percent reflectance with SOM 
(Sudduth et al., 1991). The best results with visible reflectance data have been ob- 
tained with red light (Vinogradov, 19Sl), while the most predictive NIR wavelengths 
have ranged from 1700 to 2600 nm. (Morra et al., 1991; Henderson et al., 1992). 

2.1. Sensing for automatic herbicide rate control 

Several researchers have developed optical SOM sensors to be used as a control 
input for variable rate herbicide application. These sensors have ranged from simple, 
single-wavelength devices to dedicated spectrophotometers capable of acquumg 
reflectance data at a number of wavelengths (Sudduth et al., 1991). Krishnan et 
al. (1980) correlated multiple-band reflectance characteristics in the 400-2400 nm 
range and SOM for ten Illinois soils at four moisture levels. IBetter correlations 
were obtained with visible range data than with NIR data. A first derivative model 
using optical density data yielded an P-~ of 0.85 with the calibration dataset. Pittis et 
al. (1986) could not obtain satisfactory correlations when using this model with an 
expanded set of 30 Illinois soils ranging from 0.77 to 5.01% SOM. However, they 
were able to successfully predict a ra.nge of S’OM for each of the 30 soils using an 
exclusion algorithm and polychromatic (white), green, and red reflectance data. The 
width of the prediction range for each soil was between 1 and 3% SOM, with a.n 
average width of 1.4% SOM. 

Griffis (1985) developed and tested a SOM sensor consisting of an incandescent 
source and silicon phototransistor mounted in a light-proof housing. An Y’ of 0.75 
was obtained in laboratory tests with a set of 18 air-dry Arkansas soils ranging 
from 0.19 to 1.98% organic carbon. Kocher and Griffis (1989) reported on an 
elevating chain and horizontal belt system which was used to convey soil past the 
sensor developed by Griffis (1985). In laboratory tests with sieved, air-dry soil, the 
conveying mechanism-sensor combination was successful in locating a step change 
in soil type. 

Gunsaulis et al. (1991) studied the effect of soil surface structure on reflectance 
from a red (660 nm) light-emitting diode (LED) source. Surface preparation 
was by sieving the air-dry soil and then scraping or rolling .the surface before 
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obtaining reflectance measurements. ‘Two sensor geometries were tested; one which 
measured only diffuse reflectance and one which measured both diffuse and specular 
reflectance components. The 20 Arkansas soils used ranged from 0.47 to 2.1% 
organic matter. The best results (u2 = 0.61) were obtained with absorbance data 
from the diffuse-specular sensor, the largest sieve size (3.66 mm) and a scraped soil 
surface (Table 1). Attempts to minimize surface structure effects by passing the soil 
through small sieves and rolling the surface smooth resulted in weaker (r2 = 0.40) 
correlations with SOM. Improved results (r2 = 0.73) were obtained with multiple 
linear regression on data obtained from both sensors (Table 1). 

The sensors described above, which generally used only one or a few pieces of 
spectral information (in terms of color coordinates or reflectance values) did not 
achieve the goal of providing optical estimation of SOM over a wide (entire state: or 
larger) geographic range. Armed with this knowledge, researchers sought to improve 
their results either by using a single-wavelength sensor requiring recalibration for 
each soil catena’ in which the sensor operated, or by developing instruments 
which were capable of providing additional spectral information from many narrow 
wavelength bands. 

2.2. Single-wavelength sensing 

In the single-wavelength sensing approach, researchers at Purdue University 
(Fernandez et al., 1988) correlated Munsell color with SOM for a given soil 
catena, hypothesizing that there would be a closer relationship than those previously 
reported for wider geographic areas. Samples collected from three soil series in 
each of two catenas yielded strong correlations between SOM and Munsell value 
(moist soil y2 = 0.92, dry soil r2 = 0.94). Different calibrations were required at the 
two moisture levels, and the calibrations developed were applicable only within the 
catenas studied, containing only silt lolam and silty clay loam soils. 

Shonk et al. (1991) built upon the work of Fernandez et al. (1988) and developed 
a real-time SOM sensor intended to be recalibrated for each new soil catena, rather 
than for a large geographic area (such as several hundreds of square kilometers). 
The sensor consisted of compact transmitter and receiver modules that utilized 
light reflectance to measure SOM. Six or eight LEDs were arranged in an array 
around a photodiode to focus an intense beam of light on the soil surface directly 
below the photodiode. The position of the LEDs assured equal illumination of the 
sensed surface by each diode, minimizing specular reflectance. The field of view of 
the photodiode was constrained to the most intensely illuminated area of the soil 
surface and sensor height was 25 mm above the soil surface. 

Laboratory tests using red (660 nm) LEDs as the light source on soil samples 
collected from five representative midwestern U.S. fields yielded strong correlations 
(r2 = 0.80 to 0.98) for soils obtained within a single catena and prepared to a single 

? A sequence of soils of about the same age, derived from similar parent material, and occurring 
under similar climatic conditions, but having different characteristics due to variation in relief an’d in 
drainage. 
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Soil Organic Matter (%) 

Fig. 1. Calibrations for the soil catena-dependent sensor for fine- and medium-textured soils from two 
representative Indiana farms. 

moisture content (Table 1). Coefficients of determination (?) were greater for moist 
soils than air-dry soils. A linear relationship was found between light reflectance and 
SOM for two catenas, both having fine- and medium-textured soils (Fig. 1). 

For field operation, the sensor was mounted to a tractor tool bar and operated 
below the soil surface to minimize the effect of soil moisture, soil surface roughness, 
plant cover, and crop residues on the sensor output. Field tests showed a curvilinear 
relationship between sensor output and SOM (r2 = 0.84 to 0.95), with new 
calibrations developed for changes in travel speed or sensing depth (Shonk et al., 
1991). 

The sensor developed by Shonk et al. (1991) was licensed for commercial 
development, and used to control the rate of a granular herbicide formulation 
applied by a pneumatic metering system (McGrath et al., 1990). The probe was 
mounted to the front of a custom applicator truck and operated at a depth of 10 cm 
and speeds of up to 19 km h-t. Soil samples were collected from each different soil 
catena to develop a specific sensor calibratilon curve. McGrath et al. (1990) noted 
that moisture and surface preparation significantly affected sensor output, and 
calibration should be carried out under conditions similar to those encountered at 
the time of chemical application. The variable rate application system satisfactorily 
applied herbicides in a number of field tests, and weed control was reported as 
excellent in all cases. 

2.3. Multiple-wavelength sensing 

The cooperative USDA-ARSKJniversity of Illinois research project in optical 
sensing of soil properties has focused on developing an instrument designed to ac- 
quire NIR soil reflectance data at a number of narrow-band wavelengths. Although 
this type of instrument is more complex, more expensive, and less rugged than a 
single-band sensor, the additional reflectance information allowed the generation 
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of accurate calibrations applicable to soils obtained from multiple soil catenas 
(Sudduth and Hummel, 1993a, b). The primary intended use of this sensor was to 
provide SOM data for control of a map-based herbicide application rate control 
system. In such a system, fields could be mapped with equipment shared among 
a number of producers or applicators. The SOM information could be used alone 
or combined with other data layers in a geographic information system (GIS) to 
generate herbicide application rate maps. The SOM information might also b’e u’sed 
as a productivity indicator in the development of variable rate nitrogen application 
strategies since high SOM content soils, with their corresponding high soil moisture 
retention, are typically the highest producing portions of a field. 

Extensive laboratory tests using a representative set of 30 Illinois mineral soils 
(Table 2) indicated that NIR data analyzed by partial least squares regression 
(PLSR) held the most promise for prediction of soil organic carbon content 
(Sudduth and Hummel, 1991). PLSR, a latent variable regression method, was used 
to reduce the set of collinear independent variables (reflectances) to a smal.ler set 
of orthogonal components which represented most of the variability in the original 
data and contained a reduced amount of random measurement noise (Martens and 
Naes, 1987). The analysis technique was evidentially able to minimize the effect of 
moisture, resulting in improved SOM prediction as compared to single-wavelength 
sensing. Excellent correlation e2 [I = 0.92, standard error of prediction (SEP) = 
0.34% SOM] was obtained when the NIR data were smoothed to a 60-nm data point 
spacing and the wavelength range reduced to 1720-2380 nm, for a total of only 12 
data points used. Similar correlations were obtained with a 40-nm data spacing and 
a slightly smaller wavelength range (Sudduth and Hummel, 1991). 

A rugged, portable NIR spectrophotometer was developed to implement this 
prediction method, and laboratory and field tests were completed (Sudduth and 
Hummel, 1993a, b). The sensor used a circular variable filter (CVF) spinning at 5 
Hz to sequentially provide monochromatic, chopped light from a broadband quartz- 
halogen source. A fiber optic bundle transmitted the monochromatic light to the 
soil surface, allowing remote mounting of the major portion of the sensor. A lead 
sulfide photodetector captured the energy diffusely reflected from the soil surface. 
The output from the detector was conditioned by an AC-coupled preamplifier and 
input to a PC through a 12-bit A/I> converter. The effective sensing range was 
from 1630 to 2650 nm, on a 52-nm bandpass. The portable spectrophotometer 
predicted organic matter in the laboratory ((Fig. 2) across a range of soil types 
and moisture contents, with a predictive capability (r2 = 0.89, SEP = 0.40% 
SOM) approaching that of data obtained on the same soils with a research-grade 
spectrophotometer (Table 1). Field operation of the prototype sensor did not yield 
acceptable results (SEP = 0.91% SOM), due at least in part to errors introduced 
by the movement of soiI past the sensor during the scanning process (Sudduth and 
Hummel, 1993b). 

Additional laboratory tests of the NIR sensor with soils obtained from across 
the contmental U.S. showed that acceptable, SOM predictive capability could be 
maintained with a single calibration equation for soils from the lower U.S. Corn 
Belt - Illinois, Missouri, Indiana, and Ohio. Calibrations obtained for wider 
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Table 2 

Organic matter, textural properties, and moisture content of 30 illinois surface mineral soils 

Soil name and 
textural class a 

ID Organic 
matter 

(%) 

Textural properties 

Sand Silt 

(%I (%I 

Clay 

(%I 

Mean moisture (%) 

1.5 0.033 

MPa MPa 

Loamy sand 
Ade 

Plainfield 
Sparta 
Maumee 

Sandy loam 
Carmi 

Loam 
Ambraw 
Tice 

Clay 
Jacob 

Clay loam 
Proctor 

Darwin 

Silt loam 
Wynoose 
Birkbeck 
Shoals 

Cisne 
Bluford 

Saybrook 
Catlin 
Saybrook 

Cisne 
Piopolis 

Silty clay loam 
Flanagan 

Jacob 
Flanagan 
Drummer 
Flanagan 
Drummer 
Proctor 

Flanagan 
Drummer 
Plan0 

1 0.77 86.5 7.3 6.2 1.52 4.08 
2 1.02 83.7 12.7 3.6 0.97 6.04 
3 1.18 85.4 10.4 4.2 1.29 5.83 
4 1.79 84.1 7.6 8.3 1.99 5.73 

5 1.96 67.2 21.7 11.1 3.71 8.98 

6 2.18 48.0 29.2 22.0 8.16 14.63 
11 1.71 25.8 50.0 24.2 8.61 18.09 

7 3.47 3.8 33.6 62.6 22.59 34.63 

8 1.41 25.6 47.1 27.3 7.25 17.98 
9 2.32 34.5 33.9 31.6 10.28 19.78 

10 I .62 6.3 79.0 14.7 5.01 20.91 
12 1.79 5.4 17.5 17.1 4.29 21.19 
13 1.27 27.8 59.6 12.6 3.94 18.58 

14 2.17 11.7 68.0 20.3 8.30 20.42 

15 1.32 20.3 66.9 12.8 3.66 19.40 

16 2.18 12.7 62.8 24.5 7.92 20.78 

17 3.21 5.2 70.6 24.2 7.31 24.16 
18 2.72 4.8 72.3 26.9 10.00 24.04 

19 2.68 11.5 66.3 22.2 9.66 21.47 
22 2.65 4.1 68.8 27.1 7.23 25.31 

20 3.62 5.9 57.2 36.9 15.95 
21 1.93 9.4 65.8 24.8 9.42 

23 3.17 6.3 61.1 26.6 8.64 
24 3.09 9.0 63.4 27.6 10.99 

25 3.95 9.2 60.0 30.8 10.96 
26 5.01 8.7 61.0 30.3 12.52 
27 3.94 6.7 64.2 29.4 10.20 
28 3.27 6.2 66.4 27.4 8.95 

29 3.85 12.6 55.9 31.5 12.44 

30 3.13 7.9 65.6 26.5 8.76 

28.02 
25.91 
22.59 
22.43 
20.22 
22.58 
23.83 

21.06 
25.13 
19.85 

~-- 

a TexturaL classification and properties from Worrier (1989). 

geographic areas suffered from a significant decrease in accuracy (Table 1). A 
similar sensitivity analysis carried out on the soil reflectance database compiled by 
Stoner and Baumgardner (1981) confirmed these results (Sudduth et al., 1990). 
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Fig. 2. Sensor versus laboratory measured SOM of 30 Illinois soils. Reflectance data were collected for 
soils at 0.033 and 1.5 MPa moisture tension levels, illustrating the sensor’s capability to predict SOM 
over a broad range of soil moisture levels. 

The prototype NIR sensor was redesigned for improved accuracy, faster data col- 
lection, and improved portability (Sudduth and Hummel, 1993~). As with the initial 
design (Sudduth and Hummel, 1993a), the revised spectrophotometer incorporated 
a broadband NIR source, CVF monochromator, and lead sulfide photodetector. 
The source and photodetector were unchanged from the initial design, while a 180 
arc CVF replaced the original 90” arc CVE This change reduced the optical band- 
width of the system at a given filter disk rotational speed, since the arc illuminated 
by the source would now represent a smaller wavelength span. The bandwidth re- 
duction allowed flexibility to either acquire data more quickly with the same spectral 
resolution, as would be desirable in a field unit, or to collect data at the same speed 
with increased resolution, as might be desirable in a laboratory application. The 
sensing head was connected directly tlo the monochromator, rather than through the 
fiber-optic bundle used in the initial prototype. This direct connection was made 
to maximize throughput and improve the signal/noise ratio, especially at the longer 
wavelengths where the transmission character&tics of the fiber optics were a limiting 
factor in the initial prototype. 

Electronic modifications were ma.de to reduce the complexity and amount of 
off-line computation required to process the reflectance signal to usable form. 
Data acquisition was triggered by a 500 pulse rev-’ signal obtained from an 
encoder mounted to the CVF drive shaft. ‘Thus, the photodetector output was 
digitized at fixed points in the rotation of the CVF, eliminating ambiguities due 
to shaft speed variations. This design allowed absolute reflectance to be calculated 
by direct point-by-point ratios of soil and ceramic reference disk reflectances, 
eliminating the interpolation procedure needed for the earlier prototype (Sudduth 
and Hummel, 1993a). The photodetector was provided with a constant-current 
excitation and a DC-coupled signal path to eliminate the need for time-consuming 
software correction as implemented in the previous AC-coupled signal path. Signal 
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drift compensation was obtained by reading the photodetector output during the 
portion of the filter disk period when the input slit was not positioned over the 
CVF segment. A dedicated single-board computer was implemented for system 
calibration and optical performance evaluation (Sudduth and Hummel, 1993~). 

The redesign of the portable NIR spectrophotometer resulted in improved ease 
of use and increased accuracy. Bandwidth of the revised instrument was 45 nm; 
wavelength instability was essentially eliminated, and reflectance data could be 
obtained on-line from the dedicated microprocessor within 10 s. 

After optical performance was optimized and documented, the spectrophotome- 
ter was used for soil property estimation. Both a group of samples obtained from 30 
surface soils and another set of samples collected from each of two soils at six depth 
increments were analyzed. The laboratory methods used to prepare and analyze 
the samples, the operation of the portable spectrophotometer, and the PLSR and 
stepwise multiple linear regression (SMLR) calibration procedures used to estimate 
SOM were discussed by Sudduth and Hummel (1993~). 

Results of PLSR SOM estimation for the 30 surface soils (v’ = 0.84, SEP = 0.43% 
SOM; Table 1) were comparable to results obtained with the previous prototype 
spectrophotometer. SMLR estimation using the maximum number of valid variables 
yielded slightly larger SOM prediction errors than did PLSR. SOM appeared to be 
more correlated with the general shape and level of the soil reflectance curve rather 
than with reflectance at specific wavelengths, causing better results to be obtained 
with the full-spectrum PLSR technique than with the SMLR technique. 

PLSR and SMLR calibrations yielded similar SOM prediction errors through the 
soil profile (Sudduth and Hummel, 1993~). These results were more accurate than 
those obtained for the 30 surface soils. NIR. estimation of SOM through the soil 
profile appears feasible, but additional work is needed to verify this relationship 
over a wider range of soils. 

In a related project, Worner (1989) developed a portable spectrophotometer 
suitable for collection of multiple-wavelength visible/NIR reflectance data in the 
laboratory. Smith (1991) modified this spectrophotometer for improved perfor- 
mance and reliability, and used it to collect reflectance data on the same set of 30 
Illinois soils used by other researchers (Pitts et al., 1986; Sudduth and Hummel, 
1993b). Analysis of combined field capacity and wilting point moisture level data by 
SMLR yielded an r2 of 0.61 and a SEP of 0.79% SOM (Table 1). 

3. Sensing of soil moisture and CEC 

Optical sensing of soil moisture using NIR takes advantage of the several water 
absorption bands in the NIR spectrum. Researchers have used data obtained at 
two (Christensen and Hummel, 1985; Kano et al., 1985) or three (Dalal and Henry, 
1986) wavelengths, and have usually obtained good correlations (r2 > 0.9) between 
soil moisture and reflectance. 

Price and Gaultney (1993) developed a real-time sensor to measure soil moisture 
beneath the soil surface to aid in the placement of seeds at a depth where soil 
moisture was optimal for germination. The sensor was based on measuring the 



J. W Hummel et al. 1 Computers and Electronics in Agriculture 14 (1996) 121-136 !31 

relative reflection of light from the soil surface illuminated by three sequentially 
pulsed laser diodes. The laser diodes emitted narrow spectrum pulses at 750, 810, 
and 840 nm. A maximum likelihood classifier algorithm was used to determine the 
most likely moisture content of the soil. In laboratory tests conducted on 29 soils 
encompassing three soil textures (loam, silt lloam, and silty clay loam) and five soil 
moisture tensions, the sensor was able to classify 82% of the samples correctly into 
moist (0.01, 0.03 or 0.05 MPa) or dry (0.1 or 1.5 MPa) categories. In field tests, at 
speeds of 2-3 km h-‘: the sensor correctly classified 82% of the soil samples. As 
long as soil type did not vary greatly, the sensor could estimate soil moisture with 
sufhcient accuracy for planting depth control, where the objective is locating the 
drying front where soil moisture transitions from dry to moist occur in a relatively 
small depth increment. 

Since PLSR techniques were able to minimize the effects of soil moisture on 
SOM prediction, it also seemed reasonable to investigate the use of the technique 
to remove the effects of SOM on NIR reflectance spectra and attempt to predict 
total soil moisture. Using PLSR techniques, the portable NIR spectrophotometer 
(Sudduth and Hummel, 1993a) was; evaluated for estimating soil moisture. ‘The 
spectral reflectance data obtained in the laboratory (Sudduth and Hummel, 1993b) 
were correlated with laboratory determined gravimetric moisture for the 30 Illinois 
soils. Moisture content was predicted with a SEP of 1.88% (r’ = 0.94) for a dataset 
including moisture tensions of 0.033, 0.33, and 1.5 MPa, and air-dry soil (Fig. 3). In 
terms of the coefficient of variation (CV), the prediction of soil moisture was more 
accurate than the prediction of SOM. 

CEC is somewhat correlated to soil texture and SOM (Brady, 1984). The NIR 
dataset for the 30 Illinois soils was used to assess the sensor’s prediction capability 
for this soil property. The 0.033 and 1.5 MPa moisture datasets were combined to 

O 10 20 30 40 

Laboratory Measured Gravimetric Soil Moisture (%) 

Fig. 3. Sensor predicted versus laboratory measured moisture content of 30 Illinois soils. Soil samples 

having moisture levels of air-dry and 0.033, 0.33, and !  .5 MPa moisture tension were included in the 
test. 
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increase the number of replications,, since CEC is unaffected by soil moisture. A 
CEC prediction yielded a SEP of 3.59 mEq l(100 g)-’ for the combined 0.033 and 
1.5 MPa moisture tension dataset, illustrating the sensor’s prediction capability over 
the broad range of soil moistures that might be encountered during field operations. 
Again, in terms of the CV, the prediction of CEC was more accurate than the 
prediction of SOM. 

4. Sensing of other soil properties 

Over-use of nitrogen fertilizer is costly to the producer, and can adversely 
affect the environment if the excess is leached into surface- or ground-waters. 
Customizing the inputs of nitrogen fertilizer to every part of a field could optimize 
yield potential by minimizing input costs, optimizing yields, and helping to protect 
the environment. Several studies have shown that ion selective electrodes can be 
used to measure soil nitrates. A hand-held nitrate meter is commercially available 
from Spectrum Technologies, Inc. 3 (Plainfield, IL, USA), that provides a reading in 
a matter of minutes. Adsett and Zoerb (1991) reported on research on near real- 
time nitrate sensing using ion selective electrodes. An automated field monitoring 
system consisting of a soil sampler, nitrate extraction unit, flow cell, and controller 
were laboratory and field tested. The nitrate extraction time and methodology were 
limiting factors in the system, and additional research was planned to improve the 
mixing and extraction phases. 

ISFETs have several advantages over ion selective electrodes such as small 
dimensions, low output impedance, high signal/noise ratio, fast response and the 
ability to integrate several sensors on a single chip. However, ISFETs have the 
disadvantage of greater long-term drift and hysteresis than ion selective electrodes. 
Although these are potential problems in static measurements, the use of a dynamic 
measurement system such as flow injection analysis minimizes the effects of drift 
and hysteresis, and exploits the specific properties of ISFETs. The ability to use 
small sample volumes and sense multiple species simultaneously makes the ISFET 
an attractive sensor for the development of a real-time soil nutrient sensing system. 

Birrell and Hummel (1993) investigated the use of ISFETs to measure soil 
nitrate. A chip with four integrated ISFETs was tested in a flow injection system 
using four different flowrates ranging from 0.04 to 0.19 ml s-i, five sample injection 
times ranging from 0.25 to 2 s, and three washout times ranging from 0.75 to 2 
s. The baseline solution was pumped through the flowcell, and the test solution 
was injected into the flow stream. When injecting standard nitrate solutions, the 
correlation coefficients of a linear regression of the signal peak height against the 
logarithm (base 10) of the nitrate concentration were within the range 0.89-O 99, 

’ Mention of a trade name, proprietary product, or specatic equipment does not constitute a guarailr.ee 
or warranty by the USDA-ARS or E.1. du Pout de Nemours & Co. and does not imply the approval of 
the named product to the exclusion of other products that may be suitable. 
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Fig. 4. Effect of flowcell sample injection and washout times on the ISFET signal with 2(10)-j M 
NaN03 at 0.09 ml SC’ flowrate. 

except for the lowest flowrate which was in the range 0.72-0.99. Typical ISFET 
responses (Fig. 4) illustrate the effect of the ratio of injection time to washout 
time: and the rapid response of the ISFET to a change in input. Baseline drift is 
evident, but not problematic, as long as signal peak height relative to the baseline is 
used for each injection cycle. A cyc1.e period of 1.5 s (0.5 s injection, 1.0 s washout 
time) seemed possible. The major problem encountered was inconsistent opening 
and closing of the injection valve, and an improvement in valve operation should 
increase the precision of the system. 

4.2. Sensing of depth-to-claypan 

Claypan soils, which have a dense, clay-rich layer, cover large areas of midwestern 
U.S. Within these soils, crop production is often limited by the thickness of the 
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Fig. 5. The upper surface of the claypan in a 0.35-ha research plot, with depth below the soii surface 

estimated by electromagnetic induction, shows two buried channels crossing the plot. 

topsoil (or depth-to-claypan), and variability in this parameter must be considered 
in development of site-specific nutrient management strategies. Standard practice 
for quantifying claypan depth and characteristics involves use of a manual or 
powered soil probe at each sampling location, a slow and laborious process. 
Consequently, mapping of claypan depth has not been practical for production 
agriculture purposes. In order to quantify claypan depth variations over a large area, 
an automated, preferably non-invasive, measurement means is required. 

Several automated methods for estimating depth-to-claypan were explored (Sud- 
duth and Kitchen, 1993), including mechanical impedance measurement, ground 
penetrating radar, and EM methods of soil conductivity measurement. Of these, the 
EM measurements made with a hand-held commercially available sensor (Model 
EM38, Geonics Ltd., Mississauga, Ont.) have provided the best results. A transect 
was established in a large research plot where rapid spatial variations in depth-to- 
claypan had been detected by soil probing, and EM measurements were successfully 
regressed (r2 = 0.81) on soil probe measurements. EM data were also collected an a 
3 x 6 m grid over the entire 0.35ha plot, and the calibration obtained on the probed 
transect was used to map the EM-estimated upper surface of the claypan (Sudduth 
and Kitchen, 1993). In these data, two buried channels can be observed crossing 
the plot (Fig. 5); features confirmed by soil probing and by aerial photographs 
taken during the dry 1992 growing season which showed increased crop vigor in the 
channel areas. 

5 Conclusions 

SSCM requires the collection, coordination, and analysis of massive quantities of 
data. A large portion of those data will be collected by electronic instrumentation 
operating within each field. Information on soil property variations, often obtained 
today by laboratory analysis of manually collected soil samples, will be streamlined 
by the use of sensing technologies currently under development. 
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Considerable progress has been made in the development of sensors for 
use in field production systems. Two SOM sensors, a single-wavelength; soil 
catena-dependent sensor (Shonk et al., 1991) and a multiple-wavelength, catena- 
independent sensor (Sudduth and Hummel, 1993a, b) have both been licensed for 
commercial development. Either approach seems feasible, and each has advantages 
and disadvantages. The single-wavelength sensor requires user acceptance of the 
need to recalibrate the sensor for new soil catenas and moisture levels, but is rela- 
tively inexpensive and rugged. The multiple-,wavelength sensor has been calibrated 
for a wide geographic range and a range of soil moistures, and can also be used 
to sense soil moisture and CEC, but uses more complex technology. A simpler, 
less expensive sensor that can classify soils according to soil moisture has also been 
developed. Sensors for other soil parameters are being sought, and progress has 
been reported on nutrient and depth-to-claypan sensing. 

To date, sensor-based estimates of soil properties are generally less accurate than 
those obtained by laboratory analyses. However, real-time sensing allows much more 
data to be obtained with the same amount of effort, and these multiple points can 
be averaged to obtain improved prediction accuracy. Also, for those sensors which 
have been calibrated for a wide range of soil property variations, the data obtained 
within a single application could reasonably be expected to show smaller errors. 

As consumers’ concerns about the impact of agricultural inputs on the envi- 
ronment accelerate the demand for sensors and sensing systems, research and 
development in both the public and private sectors should expand. Future re- 
search and development efforts will undoubtedly improve the technology to provide 
more accurate sensors and improved control of agricultural inputs, and reduced 
environmental impact. 
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