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Abstract

Sensors are needed to document the spatial variability of soil parameters for successful
implementation of Site-Specific Management (SSM). This paper reports research conducted
to document the ability of a previously developed near infrared (NIR) reflectance sensor to
predict soil organic matter and soil moisture contents of surface and subsurface soils. Three
soil cores (5.56 cm dia. x 1.5 m long) were collected at each of 16 sites across a 144 000 km?
area of the US Cornbelt. Cores were subsampled at eight depth increments, and wetted to six
soil moisture levels ranging from air-dry to saturated. Spectral reflectance data (1603—2598
nm) were obtained in the laboratory on undisturbed soil samples. Data were collected on a
6.6 nm spacing with each reflectance value having a 45 nm bandpass. The data were
normalized, transformed to optical density [OD, defined as log,, (1/normalized reflectance)],
and analyzed using stepwise multiple linear regression. Standard errors of prediction for
organic matter and soil moisture were 0.62 and 5.31%, respectively. NIR soil moisture
prediction can be more easily commercialized than can soil organic matter prediction, since
a reduced number of wavelength bands are required (four versus nine, respectively). © 2001
Elsevier Science B.V. All rights reserved.
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1. Introduction

Quantification of spatial variability of soil parameters is important to the
successful implementation of Site-Specific Management (SSM). Soil parameters are
known to vary spatially, and with the availability of Global Positioning System
(GPS) technology, changes in a soil parameter can be precisely mapped. Research
has shown a need for geo-referenced data on more soil parameters, to be able to
identify which soil parameter, e.g. nutrient deficiency, soil compaction level, etc. is
limiting crop productivity at each grid point or cell throughout the field.

The sampling intensity required to produce reliable predictions of soil parameters
(and in turn, accurate maps to use when site-specifically applying soil amendments
and/or treatments), is related to the spatial scale of variability of the parameter in
question (Frogbrook, 1999). Changes in soil parameters may occur on a finer
spatial resolution than can be documented with manual and/or laboratory methods
due to cost of the sampling and analysis procedures. Therefore, there is a need for
the development of sensors to more accurately characterize within-field variability.

The general observation that soils with higher organic matter contents appear
darker formed the basis of the concept that electro-optical sensing of soil organic
matter (SOM) might be feasible (Alexander, 1969). Researchers have investigated a
number of approaches to automating this general concept, with varying degrees of
success. Problems have occurred because soil color and/or reflectance are functions
of multiple properties such as moisture, texture, mineralogy, and parent material, as
well as SOM.

Laboratory studies of optical estimation of SOM in surface soils has been
reported with color data (Steinhardt and Franzmeier, 1979; Page, 1974), and with
wide-band and narrow-band spectral reflectance data (Vinogradov, 1981; Sudduth
and Hummel, 1993b; Morra et al., 1991; Henderson et al., 1992). Sudduth and
Hummel (1993a,b) reported on the development and testing of a near infrared
(NIR) reflectance-based sensor using A-horizon Illinois soils. Sudduth and Hummel
(1996) extended that work to illustrate the sensor’s ability to estimate soil organic
carbon, soil moisture, and cation exchange capacity (CEC) of a suite of A-horizon
soils obtained over a wider geographic areca. That work is extended here through
the use of an updated prototype of the original sensor having faster data collection
capability (Sudduth and Hummel, 1993c, 1996). This study focused on the predic-
tion of soil organic matter and soil moisture in surface and subsurface layers of an
independent set of Illinois soils.

2. Materials and methods
2.1. Soil sample collection and preparation
Soil cores were obtained from 16 sites throughout Illinois in the central US

Cornbelt (Table 1). The cores were all taken from natural grass surfaces where the
grass was maintained at a height of 10 cm or less. Exact locations of the sample



Table 1

Sample site, soil series, family, and soil organic matter contents

Sample site* Soil series Family Depth increment®
1 2 3 4 5 6 7 8
Soil organic matter (%)
Brownstown Cisne Fine, montmorillonitic, mesic Mollic Albaqualfs 534 235 0.69 143 0.89 043 0.35¢  0.24¢
Bondville Flanagan/Elburn Fine, montmorillonitic, mesic Aquic 9.20 413 2.17 142 0.74 0.63¢
Argiudolls/Fine-silty, mixed, mesic Aquic Argiudolls
DeKalb Flanagan/Drumm Fine, montmorillonitic, mesic Aquic 6.29 592 3.20 1.09 221 3.0l 5.78
er Argiudolls/Fine-silty, mixed, mesic Typic
Haplaquolls
Dixon Springs Grantsburg Fine-silty, mixed, mesic Typic Fragiudalfs 363 135 0.53¢ 050 0.46
Freeport Dubuque Fine-silty, mixed, mesic Typic Hapludalfs 7.34¢ 4.04 2.11 142 0.82 0.57 0.67 048
Belleville Weir Fine, montmorillonitic, mesic Typic Ochraqualfs 231 137 1.05 1.02 097 0.66¢ 0.53°
Peoria Clinton Fine, montmorillonitic, mesic Typic Hapludalfs 340 1.36 095 0.59 0.51 0.64
Ina Cisne Fine, montmorillonitic, mesic Mollic Albaqualfs 1.75¢ 1.11  0.99 1.00 0.70 1.23 0.31
Springfield Ipava Fine, montmorillonitic, mesic Aquic Argiudolls 4.69 350 2.67 1.86 1.06 0.64 0.69 0.64
Oak Run Rozetta Fine-silty, mixed, mesic Typic Hapludalfs 147 1.13 0.53 043 046 0.38 0.35¢ 0.33
Perry Clarksdale Fine, montmorillonitic, mesic Udollic Ochraqualfs 333 1.66 1.14 0.71 0.61 048 044  0.33
Olney Bluford Fine, montmorillonitic, mesic Aeric Ochraqualfs 1.58 096 0.51 0.31 0.31 0.33¢
Carbondale Parke Fine-silty, mixed, mesic Ultic Hapludalfs 2.33 1.15 0.84¢ 0.60 0.46
Stelle Monee Fine, illitic, mesic Mollic Ochraqualfs 548° 486 5.50 212 097 0.71 0.57
Monmouth Muscatine Fine-silty, mixed, mesic Aquic Hapludolls 5.00 429 195 1.05 0.71 0.61 1.94  1.39
Martinsville Cisne Fine, montmorillonitic, mesic Mollic Albaqualfs 1.75¢  0.89 0.60 0.55 0.38 0.32 0.27¢

* All samples were of either the silt loam or silty clay loam textural classes, which predominate the surface soils in the state of Illinois. See Hollinger and

Isard (1994) for a complete geographic location of the sample collection sites.
® Depth increment 1 was 10 cm, all other depth increments were 20 cm.
¢ Data are for samples from a single soil core segment.
d Data are for samples composited from two soil core segments.
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sites and the soil series, family, texture, and total porosity were reported in
Hollinger and Isard (1994). The procedure used to obtain undisturbed soil cores
was described by Hollinger and Isard (1989).

At each site, three soil cores, up to 1.5 m in length, were collected at 120°
intervals around and within 3 m of a neutron access tube. The cores were sectioned
at the site into 10 or 20 cm lengths, capped and bagged to prevent loss of water
from, or redistribution of water within the core. In the laboratory, each 10 or 20 cm
core segment was further divided into 2.5-cm samples. These samples were used to
determine soil bulk density, volumetric water content, and for this study, soil
organic matter. The top segment of each core was 10 cm, which can most
accurately be described as the A, horizon (Buckman and Brady, 1960). The
remainder of each soil core (which included portions from the A horizon as well as
the B horizon) was divided into segments of 20 cm in length, except the bottom
segment which varied in length depending upon the total length of the full core. For
ease of description in this study, the top 10-cm core segment is called the A horizon,
and the remaining core segments are grouped together and called the B horizon.
The samples from the top core segment were collected below the grass and residue
at the top of the core. However, these samples contained more roots than those
taken from the deeper segments.

2.2. Laboratory procedures

2.2.1. Soil sample moisture tension

Six soil moisture levels (saturated, 0.033, 0.1, 0.33, 1.5 MPa, and air-dry) were
selected for this study. This broad range of moisture levels was used because
moisture levels at depths can vary considerably from those of surface layers in field
situations during data collection. Saturated conditions may occur in subsurface
layers when drier conditions at the surface would permit field operations to
proceed.

The samples taken from the undisturbed soil cores were wetted to a predeter-
mined soil moisture tension level. Samples from the three undisturbed soil cores
taken at each collection site were treated as replicates, with a typical replication
consisting of 112 randomized soil-depth samples. Soil samples, each still encom-
passed by a ring of the clear plastic tube insert (Hollinger and Isard, 1989), were
placed on a porous ceramic pressure plate. Distilled water, added to the ceramic
plate, was allowed to saturate each sample by capillary action. Any shards of
plastic tube insert remaining from the cutting process were carefully lifted from the
sample surfaces. The ceramic plates and wetted samples were placed in pressure
vessels, where the appropriate pressure was applied to obtain the desired moisture
tension level in the soil samples. When the sample moisture had equilibrated, the
pressure was removed, and the vessel was opened. Each sample was lifted from the
ceramic plate using a large spatula, placed under the NIR sensor, and multiple
reflectance scans were obtained and stored in the data acquisition computer. The
sample was weighed, and then replaced on the ceramic plate. The samples were
returned to the pressure vessel, and allowed to equilibrate at the next higher soil
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moisture tension level. This procedure was repeated until all four moisture tension
levels had been established in the samples, and the corresponding reflectance scans
obtained. The samples were rewetted to saturation, and reflectance scans and
sample weights were collected. Then the samples were allowed to equilibrate under
ambient laboratory conditions, and reflectance scans and weights were collected on
the air-dried samples. Finally, the samples were removed from the plastic tube
insert rings, oven dried at 105 °C for 24 h, and weighed. Gravimetric moisture
contents for each sample at each moisture level were calculated from these sample
weights.

2.2.2. Soil organic matter

The three replicate samples of each soil at each depth were composited, sieved,
and sub-sampled for organic matter analysis. Because direct determination of soil
organic matter cannot be done in a completely accurate manner, Nelson and
Sommers (1982) recommend that total organic carbon be determined as a measure
of organic matter content. In this research, total organic carbon content was
determined by dry combustion of duplicate samples of each soil in a LECO Model
HF10 induction furnace (Table 1). Organic carbon values were multiplied by 1.72
(Nelson and Sommers, 1982), resulting in the values of soil organic matter data.

2.3. Soil spectral reflectance

The updated prototype sensor (Sudduth and Hummel, 1993c), had a bandwidth
of 45 nm, minimal wavelength instability, and was capable of obtaining reflectance
data on-line from the dedicated microprocessor within 10 s. Although optical
performance and reliability were improved as compared to the initial prototype, the
ability of the sensor to estimate soil organic matter and soil moisture was essentially
unchanged. Reflectance data were obtained in the laboratory on the undisturbed
samples, using the same procedures reported in previous studies (Sudduth and
Hummel, 1993b). Within each soil moisture level, data were collected using a
randomized complete block design.

3. Results and discussion
3.1. Preliminary data analysis

Means, standard deviations, and coefficients of variation of the laboratory soil
moisture data were calculated to assess the quality of the data, and to identify
outliers resulting from data recording errors. Twenty seven samples, representing
1.4% of the data, were deemed to be in error and were removed from the dataset.
Since the textural class of all the soil cores was either silt loam or silty clay loam,
composited moisture data for each soil depth increment (Table 2) can illustrate the
moisture content levels in the dataset. Some variability among soil cores collected
at each sample site was expected, and the soil moisture contents at the soil tension
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levels used in this study varied more than was reported in a previous study
(Sudduth and Hummel, 1993b). The means of the soil moisture contents were
relatively uniform within each moisture tension level, particularly for the B horizon
(depth increments 2—8). Soil moisture variability among soils, as reflected by the
standard deviation, was also relatively uniform within each moisture tension level
for the B horizon.

The spectral reflectance data were transformed from reflectance to optical density
[OD, defined as log,, (1/reflectance)]. The initial spectral data ranged from 1603 nm
to 2598 nm, but because of low signal-to-noise ratios at the ends of the spectra,
only data in the 1623 nm to 2467 nm range (6.6 nm spacing— 129 data points) were
included in the analyses. The spectral reflectance data were normalized by dividing
each reflectance value by the mean reflectance of the 129 bands within each spectra,
creating a second data set with a mean of 1.0. These data were also transformed to
OD. Correlations of soil spectral OD data (both unnormalized and normalized) and
chemical/physical property data were accomplished using step-wise multiple linear
regression (SMLR) for each depth increment and for the overall dataset. The
maximum r> improvement (MAXR) model selection method in SAS Stepwise
Regression (STEPWISE) procedure (SAS Institute, 1999) was chosen, as it was
noted as being superior to other step-wise techniques and ‘almost as good’ as
evaluating all possible regressions. The SAS Generalized Linear Model (GLM)
procedure was applied to both the unnormalized and normalized datasets, and for
both soil organic matter and soil moisture, to consider the effect of the class
variables-soil, moisture, depth and replication. All class variables, with the excep-
tion of replication, were significant at the P < 0.05 level for both the unnormalized
and normalized datasets. The best linear regression models consisting of ODs were
selected by STEPWISE, which was allowed to include additional wavelengths until

Table 2
Means and standard deviations of gravimetric soil moisture contents at each soil depth increment

Depth Moisture level
increment®

Saturated 0.033 MPa 0.1 MPa 0.33 MPa 1.5 MPa Air-dry

Mean soil moisture content (% d.b.), S.D. (%)

1 56.6 (19.7)  37.3 (7.9) 31.6 (9.9)  28.1(11.6) 223 (11.0) 4.9 (2.3)
2 51.3 (8.9) 36.0 (6.6) 30.5(6.2) 256 (6.6)  19.6 (6.9) 4.0 (1.4)
3 51.4 (8.2) 37.8 (7.6) 328 (69) 278 (5.7)  22.0 (5.5 4.6 (1.6)
4 50.1 (9.8) 37.3 (6.8) 345(6.7)  30.1 (54)  25.6 (5.4) 5.7 (2.0)
5 46.9 (8.2) 36.6 (6.0) 327 (54)  28.1(43) 237 (3.7) 5.3 (2.0)
6 47.3 (8.8) 36.1 (6.0) 30.5 4.5 260 (3.8) 212 (37) 42 (1.1)
7 44.0 (10.8) 342 (7.2) 299 (5.7) 254 (48) 204 (4.5) 4.1 (1.2)
8 53.9 (6.2) 40.1 (4.6) 332(3.8) 269 (29)  20.7 (3.4) 4.7 (1.7)
Overall 502(11.5)  36.8 (6.8) 320 (6.7) 274 (6.6) 222 (6.5) 4.7 (1.8)

2 Depth increment 1 was 10 cm, all other depth increments were 20 cm.
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Fig. 1. Comparison of the prediction capability of the unnormalized and normalized datasets for: (a) soil
organic matter; and (b) soil moisture, using RPD, the ratio of standard deviation to standard error of
prediction (SEP).

any one of the parameter estimates was determined to be insignificant at the
P <0.05 level. This procedure was carried out on the overall dataset (both
unnormalized and normalized), and on the subsets of the optical density data for
each of the soil depth levels (both unnormalized and normalized). Although some
level of overfitting was possible with this scenario, it did allow a comparison of the
predictive capability with the two datasets.

RPD, the ratio of standard deviation to standard error of prediction (SEP) was
used to compare the predictive capability of the unnormalized and normalized
datasets (Fig. 1). RPD is a useful measure of fit when comparing results on datasets
containing differing degrees of variability, with a higher RPD indicating a more
accurate prediction (Williams, 1987). The predictive capability was slightly better,
considering all depth increments, with the normalized dataset as compared to the
unnormalized dataset (Fig. 1), and subsequent analyses were carried out only on
the normalized dataset.

3.2. SOM prediction

Soil carbon ranged from 0.15 to 5.35% (0.27-9.20% SOM), as compared to the
0.45-3.16% carbon range of the calibration data reported in a previous study of
A-horizon soils (Sudduth and Hummel, 1993b). The SOM ranges for this study
were 1.47-9.20 and 0.27-5.92% for the A-horizon and B-horizon segments, respec-
tively, of the soil cores in this study (Table 1).

A calibration dataset was formed by randomly selecting two of the three replicate
observations for each soil/moisture/depth combination. The remaining replicate
observation was reserved for prediction purposes. Stepwise multiple linear regres-
sion was accomplished using the SAS STEPWISE procedure. In these analyses, as
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well as all other SMLR analyses, statistical significance of the individual terms was
observed to ensure that overfitting of the data did not occur. For the overall
normalized dataset, 20 valid wavelength terms (Table 3) were returned by the
SMLR program, with a standard error of prediction (SEP) of 0.78% organic matter
and an RPD of 2.11 (Table 4). Because of increased standard errors for the
A-horizon soils (data not shown), this soil layer did not receive further analysis. For
the B-horizon data subset, 18 valid wavelength terms (Table 3) were returned and
the standard error of prediction (SEP) was reduced to 0.62% organic matter, but
because the range of soil organic matter was reduced, the RPD dropped to 2.05
(Table 4). To approximate narrow bandpass filters, ODs were combined (6 wave-
length terms each), resulting in 21 terms, with an optical bandpass of ~ 78 nm,
ranging from 1623 to 2460 nm. Using 13 combined wavelength terms, similar
results, in terms of the RPD, were obtained (Table 4). Initially, the SEC and SEP
values decreased rapidly as additional terms were introduced, but as the number of
included terms increased, the rate of reduction of SEC and SEP decreased (Fig. 2)
and both SEC and SEP asymptotically approached minimum values. Using a cutoff
of an SEP within 0.02 of the minimum obtained, nine 78-nm bandpass terms in the
calibration equation for the B-horizon dataset resulted in an SEP of 0.62% organic
matter and a RPD of 2.06 (Table 4). This prediction capability was the same, in
terms of the RPD, as that obtained with the larger number of statistically valid
terms.

Table 3
Terms identified by stepwise multiple linear regression for predicting soil organic matter using a
normalized dataset collected with an NIR soil sensor

Soil depth
Increments No. terms Center wavelengths of terms
included

Total valid terms®

Overall, 45 nm 20 1636, 1676, 1702, 1709, 1781, 1946, 1959, 1979, 2038, 2117, 2164,
bandpass 2203, 2269, 2295, 2309, 2348, 2361, 2414, 2434, 2447

B horizon, 45 18 1630, 1682, 1755, 1874, 1939, 1966, 1986, 2005, 2038, 2065, 2124,
nm bandpass 2183, 2203, 2309, 2348, 2361, 2388, 2414

B horizon, 78 13 1640, 1679, 1798, 1877, 1996, 2035, 2075, 2154, 2193, 2272, 2312,
nm bandpass 2351, 2391

SEP within 0.02 of min®

Overall, 45 nm 9 1630, 1735, 1986, 2038, 2137, 2216, 2309, 2348, 2408
bandpass

B horizon, 45 8 1630, 1722, 1874, 2164, 2203, 2295, 2361, 2440
nm bandpass

B horizon, 78 9 1640, 1679, 1758, 2035, 2154, 2193, 2312, 2351, 2431

nm bandpass

2 The maximum number of statistically significant terms by SMLR.
® The number of terms necessary to achieve a SEP within 0.02 of the minimum SEP.
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Table 4
Summary of stepwise multiple linear regression results for determining soil organic matter prediction
ability of an NIR soil sensor using the normalized dataset

Soil depth
Increments included No. terms r SEC* SEP® RPD¢

)

Total valid terms¢

Overall, 45 nm bandpass 20 0.79 0.75 0.78 2.11
B horizon, 45 nm bandpass 18 0.77 0.61 0.62 2.05
B horizon, 78 nm bandpass 13 0.76 0.63 0.62 2.06
SEP within 0.02 of min®

Overall, 45 nm bandpass 9 0.77 0.79 0.79 2.06
B horizon, 45 nm bandpass 8 0.72 0.67 0.64 2.00
B horizon, 78 nm bandpass 9 0.73 0.66 0.62 2.06

4 SEC (standard error of calibration) is the standard error of the estimate in the calibration data in
percent soil organic matter.

®SEP (standard error of prediction) is the standard error of the estimate in the validation data in
percent soil organic matter.

¢RPD is the ratio of standard deviation to SEP.

4 The maximum number of statistically significant terms by SMLR.

¢ The number of terms necessary to achieve a SEP within 0.02 of the minimum SEP.

The prediction of soil organic matter (Fig. 3) shows a tendency to under-predict
at the higher moisture levels, and the tendency remains when the A-horizon data
are removed from the dataset. A relatively narrow range of SOM in the samples,
which is typical of B-horizon soils, resulted in reduced coefficients of determination
and increased SEPs (Table 4) as compared to earlier reported research on surface
soils (Sudduth and Hummel, 1993b, 1996), and removal of the A-horizon data
further reduced the organic matter range.

3.3. Soil moisture prediction

Six soil moisture levels, ranging from saturated to air-dry, were included in this
study. Mean soil moisture was 50.2, 36.8, 32.0, 27.4, 22.2, and 4.7% for the
moisture tension levels ranging from saturated to air-dry, respectively (Table 2).
The low standard deviations of the soil moisture levels across soil cores were
attributed to the relatively uniform clay content and reduced organic matter content
in the B horizon of these soils.

Using SMLR with the overall normalized dataset, 12 valid wavelength terms
(Table 5) were returned, with a standard error of prediction (SEP) of 6.38% soil
moisture and an RPD of 2.36 (Table 6). For the B-horizon data subset, 13 valid
wavelength terms (Table 5) were returned. The SEP decreased to 5.15% soil
moisture, and the RPD increased to 2.87. When ODs were combined to produce 21
possible predictive terms, only 8 terms were significant, with essentially no change
in either SEP or RPD (Table 6). Using an arbitrary cutoff on further reduction in
the RPD, only five 45-nm bandpass terms in the calibration equation resulted in a
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Fig. 2. Comparison of Standard Error of Calibration (SEC) and Standard Error of Prediction (SEP)
values obtained with SMLR for predicting soil organic matter. From top to bottom, comparisons are
for: (a) the combined A- and B-horizon normalized dataset using 45-nm bandpass terms; (b) the
B-horizon normalized dataset using 45-nm bandpass terms; and (c) the B-horizon normalized dataset
using 78-nm bandpass terms.

Fig. 3. Comparison of observed and predicted soil organic matter using reflectance data from undis-
turbed soil core segments. From top to bottom, predictions are for: (a) the combined A- and B-horizon
dataset using all valid SMLR terms (45-nm bandwidth); (b) the B-horizon dataset using all valid SMLR
terms (45-nm bandwidth); (c) the B-horizon dataset using all valid SMLR terms (78-nm bandwidth); and
(d) the B-horizon dataset using only those SMLR terms needed for an SEP within 0.02 of the minimum
SEP (78-nm bandwidth). Left column-prediction of the calibration dataset; right column-prediction of
the prediction dataset.
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Table 5
Terms identified by stepwise multiple linear regression for predicting soil moisture using a normalized
dataset collected with an NIR soil sensor

Soil depth
Increments No. terms Center wavelengths of terms
included

Total valid terms®

Overall, 45 nm 12 1623, 1748, 1775, 1781, 1788, 1860, 1880, 1926, 1972, 2025, 2131,
bandpass 2216

B horizon, 45 13 1623, 1821, 1887, 2032, 2038, 2085, 2117, 2150, 2164, 2230, 2243,
nm bandpass 2289, 2309

B horizon, 78 8 1640, 1837, 1877, 2035, 2114, 2233, 2272, 2312

nm bandpass

SEP within 0.02 of min®

Overall, 45 nm 5 1623, 1762, 2025, 2131, 2223
bandpass

B horizon, 45 5 1860, 1874, 2025, 2117, 2230
nm bandpass

B horizon, 78 4 1837, 2035, 2114, 2233

nm bandpass

2 The maximum number of statistically significant terms by SMLR.
® The number of terms necessary to achieve a SEP within 0.02 of the minimum SEP.

SEP of 5.24% soil moisture and an RPD of 2.82. When the response of narrow
bandpass filters was approximated, only four terms were used in the calibration
equation, and the SEP increased to 5.31% soil moisture while RPD was reduced to
2.78 (Table 6). The rapid reduction in standard error for soil moisture data, as
additional terms were introduced by SMLR, for the B-horizon dataset is evident in
Fig. 4(b, ¢). The low number of wavelength terms for soil moisture prediction in the
B horizon is of special interest in applications such as moisture compensation in soil
cone penetrometers.

The prediction of soil moisture (Fig. 5) shows a tendency to under-predict at the
higher moisture levels, and, as with SOM, the tendency was unaffected by the
removal of the A-horizon data from the dataset. A layer of water may have been
present on the surface of some of the saturated samples during the reflectance data
collection, which would have introduced specular reflectance and hampered the
ability of the NIR sensor to capture soil spectral reflectance. A lower moisture
content at the sample surface presented to the sensor than within the remainder of
the sample is more likely for the saturated samples, because of moisture movement
due to gravity. This situation would contribute to the tendency to under-predict at
higher gravimetric (observed) soil moisture contents (Fig. 5). The SEP values for
B-horizon soil moisture were three times greater than earlier reported values for
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Fig. 4. Comparison of Standard Error of Calibration (SEC) and Standard Error of Prediction (SEP)
values obtained with SMLR for predicting soil moisture content. From top to bottom, comparisons are
for: (a) the combined A- and B-horizon normalized dataset using 45-nm bandpass terms; (b) the
B-horizon normalized dataset using 45-nm bandpass terms; and (c) the B-horizon normalized dataset
using 78-nm bandpass terms.
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Table 6
Summary of stepwise multiple linear regression results for determining soil moisture prediction ability
of an NIR soil sensor using the normalized dataset

Soil depth
Increments included No. terms r SEC* SEP® RPD¢

)

Total valid terms¢

Overall, 45 nm bandpass 12 0.88 5.19 6.38 2.36
B horizon, 45 nm bandpass 13 0.89 4.81 5.15 2.87
B horizon, 78 nm bandpass 8 0.89 4.97 5.16 2.86
SEP within 0.2 of min®

Overall, 45 nm bandpass 5 0.87 5.35 6.44 2.34
B horizon, 45 nm bandpass 5 0.88 5.04 5.24 2.82
B horizon, 78 nm bandpass 4 0.88 5.10 5.31 2.78

4 SEC (standard error of calibration) is the standard error of the estimate in the calibration data in
percent soil organic matter.

®SEP (standard error of prediction) is the standard error of the estimate in the validation data in
percent soil organic matter.

¢RPD is the ratio of standard deviation to SEP.

4 The maximum number of statistically significant terms by SMLR.

¢ The number of terms necessary to achieve a SEP within 0.02 of the minimum SEP.

A-horizon soils (Sudduth and Hummel, 1993c), indicating a reduced soil moisture
prediction capability. The portion of the reduction in predictive capability that can
be attributed to the use of undisturbed soil core segments in this study, as compared
to cleaned, ground, and sieved samples in the previously reported study, is
unknown.

4. Conclusions

These tests of a prototype NIR reflectance sensor demonstrated that the technol-
ogy may be applicable for the estimation of soil organic matter and soil moisture
in B-horizon soils. Additional work will be necessary to extend the applicability
beyond the group of silt loam and silty clay loam soils (Central US Cornbelt)
included in this project.

Fig. 5. Comparison of observed and predicted soil moisture using reflectance data from undisturbed soil
core segments. From top to bottom, predictions are for: (a) the combined A- and B-horizon dataset
using all valid SMLR terms (45-nm bandwidth); (b) the B-horizon dataset using all valid SMLR terms
(45-nm bandwidth); (c) the B-horizon dataset using all valid SMLR terms (78-nm bandwidth); and (d)
the B-horizon dataset using only those SMLR terms needed for a SEP within 0.2 of the minimum SEP
(78-nm bandwidth). Left column-prediction of the calibration dataset; right column-prediction of the
prediction dataset.
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The ability to predict organic matter and soil moisture using undisturbed cores is
a definite step toward in situ measurement of these soil parameters. The predictive
capabilities of the NIR sensor for soil organic matter and soil moisture for
B-horizon soils were not as accurate as for prepared samples of surface soil layers,
but may be sufficient for site-specific management if multiple predictions can be
aggregated. Sensing and mapping of soil organic matter in the B-horizon as well as
in the surface layer could lead to a better understanding of soil moisture retention,
which is a major factor in plant growth and productivity.

The use of only four wavelength bands for the prediction of soil moisture also
has implications in the commercialization of the sensor technology. A small number
of fixed bandwidth filter elements would be more economical and rugged than the
components used in the current prototype. This approach might find application as
a component of a sensor for some other soil parameter, in the same manner as a
grain moisture sensor is an integral part of a yield monitor.
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