DELINEATION OF DITE-DPECIFIC MANAGEMENT ZONES BY
UNSUPERVISED CLASSIFICATION OF TOPOGRAPHIC ATTRIBUTES AND SOIL
ELECTRICAL CONDUCTIVITY

C. W. Fraisse, K. A. Sudduth, N. R. Kitchen

ABSTRACT. The objective of this research was to determine if unsupervised classification of topographic attributes and soil
electrical conductivity could identify management zones for use in precision agriculture. Data collected in two fields located
in central Missouri were used to test the proposed methodology. Principal component analysis was used to determine which
layers of data were most important for representing within—field variability. Unsupervised clustering algorithms implemented
in geographic information system (GIS) software were then used to divide the fields into potential management zones. Grain
yield data obtained using a full-size combine equipped with a commercial yield sensing system and global positioning system
(GPS) receiver were used to analyze the “goodness” of the potential management zones defined for each field. Principal
component analysis of input variables for Field 1 indicated that elevation and bulk soil electrical conductivity (EC) were more
important attributes than slope and Compound Topographic Index (CTI) for defining claypan soil management zones. The
optimum number of zones to use when dividing a field may vary from year to year and was mainly a function of weather and
the crop planted. The number of zones decreased if adequate moisture conditions were present throughout the cropping season
(unpredictable) or if crops tolerant to water stress were planted (predictable). This classification procedure is fast, can be
easily automated in commercially available GIS software, and has considerable advantages when compared to other methods

for delineating within—field management zones.
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ite—specific management, or precision agriculture,

has the potential to change the way fields are

managed through variable-rate application of

inputs such as fertilizers, lime, seeds, and pesticides.
A potential failing of site—specific management is that the
decision rules for varying inputs commonly use
recommendation algorithms originally developed for
whole—field management. These algorithms were generally
based on data obtained from multiple locations over large
geographic areas. Development of agronomic strategies
specific to areas of a field that are subject to unique
combinations of potential yield-limiting factors would allow
more accurate management of inputs. The task of
determining sub—field areas is difficult due to the complex
combination of factors that affect crop yields.

Three basic approaches have been used to delineate soil
management zones for site—specific management (Bell et al.,
1995). The first uses county (order II) soil surveys prepared
by the National Cooperative Soil Survey program, which
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describe soil variability at scales typically ranging from
1:12,000 to 1:24,000. More detailed surveys (order I) have
occasionally been used and provide soil information at
approximately the 1:5,000 scale. Traditional soil surveys
give a general understanding of the effects of soil mapping
units on crop productivity. However, they were not intended
for making within—field recommendations at the same scale
used today for site—specific management (Mausbach et al.,
1993). A second approach uses geostatistical interpolation
techniques to estimate the spatial distribution of soil
properties from a network of point measurements. A
disadvantage of this method is the large number of soil
samples that must be collected and analyzed for correct
representation of the variability present (Wollenhaupt et al.,
1997).

A third approach uses temporally—stable data, such as bulk
soil electrical conductivity (EC) and landscape features, to
estimate patterns of soil variability using soil-landscape
models. Landscape position and topographic attributes have
been widely used to map within—field areas of high and low
productivity based on water availability (Jones et al., 1989;
Mulla et al., 1992; Jaynes et al., 1995; Sudduth et al., 1997).
In these studies, footslope positions generally out-yielded
up-slope positions unless poor drainage caused ponding or
lack of aeration. Soil EC has also been used to investigate
yield variability caused by soil water differences (Jaynes et
al., 1995; Sudduth et al., 1995).

Kitchen et al. (1998) compared the use of traditional soil
surveys and a map overlay approach based on topsoil depth
and elevation to delineate management zones. They
concluded that the map overlay approach has the advantage
of being based on georeferenced measurements that are
repeatable, unlike traditional soil surveys. However, the
delineation of zones based on the map overlay approach is
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dependent on arbitrary classification criteria defined by the
user, which include the number of classes and class breaks
defined for each variable. Normally, the map layers
representing each variable are first reclassed in a
user—defined number of classes. Following that, the resulting
maps are overlaid, and the unique combinations of classes
define the management zones in the field. If the user defines
a different number of classes for a given variable, then the
resulting classification will be different, and consequently,
different management zones will be produced.

An additional approach is the use of unsupervised
clustering algorithms, which are available in most
commercial Geographic Information Systems (GIS) soft-
ware, for grouping similar areas in the field. This approach
is fast, can be easily automated, and does not require the
initial reclassification of variables. It also allows the
inclusion of additional layers that might be important to
characterize the variability observed in the field, such as
remote sensing images or yield maps, further refining or
validating the delineation process.

The objective of this study was to develop automated,
unbiased procedures for defining sub-field management
zones through the application of unsupervised clustering
algorithms to soil EC measurements and topographic
attributes calculated from elevation measurements.

MATERIALS AND METHODS
RESEARCH FIELDS DESCRIPTION

Elevation and soil EC data were collected on two fields,
36 ha (Field 1) and 28 ha (Field 2) in size, located near
Centralia, Missouri. The soils of the study fields are
characterized as claypan soils (fine, smectitic, mesic, Aeric
Vertic Epiaqualfs and Vertic Albaqualfs). These soils are
poorly drained and have a restrictive, high—clay content layer
(the claypan) occurring below the topsoil. Detailed elevation
data were obtained using a total station surveying instrument
and standard mapping procedures. Field 1 elevation ranges
from 265.8 m at the southeast corner to 261.9 m at the
drainage outlet along the north edge of the field (fig. 1).
Surface and subsurface water flows from the west and east
sides of the field to a central natural drainage channel that
carries the water to the outlet. Field 2 elevation ranges from
264.5 m at the southeast boundary to 261.0 m at the drainage
outlet in the northwest corner of the field.

Topographic attributes were calculated from elevation
data using TAPES-G (Terrain Analysis Program for the
Environmental Sciences—Grid version), a program designed
primarily to calculate hydrological factors from a Digital
Elevation Model (DEM)(Gallant and Wilson, 1996).
Attributes calculated were slope, profile curvature,
tangential curvature, and compound topographic index
(CTI), since each of these was hypothesized to be useful in
differentiating areas of the field where yield-limiting factors
varied. Slopes were obtained using the D8 approach, which
calculates gradient as the steepest slope from the central node
to one of its eight nearest neighbors. Profile curvature
measures the rate of change in the direction of maximum
slope. Tangential curvature is the curvature in the normal
plane in the direction perpendicular to the gradient (or
tangent to the contour line). Tangent curvature can be
expected to provide a good representation of the collection or
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dispersal of water flowing over a surface. The CTI or wetness
index (eq. 1) is a function of specific catchment area (A) and
the slope gradient (), and represents the spatial distribution
of water accumulation areas in the landscape.

CTl=In-25 . (1)
tan}

Figure 2 shows slope and CTI variability for Field 1. The
darker areas of the CTI map indicate zones of surface
saturation or higher soil moisture content.

Electrical conductivity of the soil was measured using an
EM38 (Geonics Limited, Mississauga, Ontario, Canada).
The EM38 uses the principle of electromagnetic induction to
quantify soil EC in milliSiemens per meter (mS/m). The
instrument was operated in the vertical dipole mode,
providing an effective measurement depth of approximately
1.5 m (McNeil, 1992). Measurements in the field were
performed using a mobile system that included an all-terrain
vehicle, a wooden trailer for carrying the EM38, a DGPS
receiver, and a computer for data acquisition (Kitchen et al.,
1996). Previous work (Sudduth et al., 1995) demonstrated
that areas of high soil EC readings correspond to shallow
topsoil (<20 cm) where the claypan horizon is closer to the
soil surface. Low readings are observed in areas of the field
with deep topsoil (>60 cm), generally located at lower
elevations where there is deposition of eroded topsoil
material. Figure 3 is a soil conductivity map of Field 1.

YIELD DATA

Grain yield data were obtained using a full-size combine
equipped with a commercial yield sensing system and global
positioning system (GPS) receiver. Data for Field 1 were
obtained for corn (1993, 1997), soybean (1994, 1996), and
grain sorghum (1995) crops. Data for Field 2 were obtained
for corn (1996) and soybean (1995, 1997) crops. Yield data
were analyzed using geostatistics, and appropriate semi—va-
riogram models and parameters were used to krige the data
to a grid with a 10—m cell size.

Eleyation (m)

261.9-262.6
262.6 2634
263.4-264.2
264.2-265.0
265.0-265.8

#*

Figure 1. Elevation map of Field 1.
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Figure 2. Slope and compound topographic index (CTI) maps of Field 1.
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Figure 3. Soil electrical conductivity map of Field 1.

PRINCIPAL COMPONENT ANALYSIS

Principal Component Analysis (PCA) is a classical
statistical technique that linearly transforms an original data
set of variables. The general purpose of PCA is data
description and interpretation. In practice, PCA reduces the
dimensionality of problems and transforms interdependent
variables into significant and independent ones. This linear
transformation can compress the original data set into a
substantially smaller set of uncorrelated variables, the
principal components, that represents most of the
information in the original set of variables (Dunteman,
1989). The most important variables describing the total
variation in a data set can also be selected by PCA. That is,
rather than substituting the principal components for the
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original variables, we can select a set of variables that have
high correlation with the major principal components.

In this study, PCA was used to help determine which
variables were most important for the characterization of
variability and should therefore be used in the unsupervised
classification. The main goal in this process was to reduce the
number of variables without losing important information.
We also wanted to know if the measurement of soil EC was
necessary or if successful classification was possible using
only topographic attributes. The Unscrambler, version 5.5,
software (Computer Aided Modeling, 1994) was used for
describing and analyzing the data set by PCA.

UNSUPERVISED CLASSIFICATION
The main objective in an unsupervised classification or
clustering is to identity naturally occurring clusters in the

.data. The unsupervised clustering algorithm used was the

ISODATA (Iterative Self-Organizing Data Analysis Tech-
nique) procedure (Tou and Gonzalez, 1974). This algorithm
is commonly used for satellite image classification based on
spectral reflectances from multiple wavebands (Irvin, 1996).
It was accomplished using the ISOCLUSTER function in the
Arc/Info GIS software, Grid module (ESRI, 1994). The
ISOCLUSTER function uses a modified iterative optimiza-
tion procedure, also known as the migrating means
technique. The process starts with arbitrary means being
assigned by the software, one for each cluster (the number of
clusters is dictated as a user input). Every cell is then assigned
to the closest of these means, all in the multidimensional
attribute space. New means are then recalculated for each
cluster based on the attribute distances of the cells that belong
to the cluster after the first iteration. The process is repeated
enough times to ensure that the migration of cells from one
cluster to another is minimal and that all the clusters become
stable. The user specifies the number of classes, number of
iterations, minimum number of cells in a class, and sampling
interval. The ISOCLUSTER function returns a signature file
containing class means and covariance matrices, which are
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then used as input for the maximum likelihood classifier (the
MLCLASSIFY function in Arc/Info). The classifier uses the
mean vector and covariance matrix of each class to compute
the statistical probability that a grid cell belongs to a class.
Each cell is assigned to the class for which it has the highest
probability of being a member.

In order to characterize resulting classes by mean vectors
and covariance matrices, the data for each class should have
a roughly Gaussian distribution. Elevation, profile curvature,
tangential curvature, and soil EC all exhibited adequate
distributions (fig. 4). However, the slope data histogram was
slightly skewed and was therefore log transformed to
improve its distribution. The distribution of CTI was also
skewed, with the higher values separated from the main
distribution representing the drainage channel where the
specific catchment area (Ay) is larger and the slope gradient
(B) is generally lower. This data was also log transformed, but
this provided only a modest improvement in approximating
a normal distribution.
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Better results are obtained in the clustering process if all
layers in the stack have the same data ranges. The data ranges
in the original data were very different. Therefore, all grids
were transformed using equation 2 to a range between 0 and
100 prior to PCA analysis and ISOCLUSTER classification.

(X — oldmip) X (newmax— newmin)
Z= + i (2
oldmax— oldmin "¢ min

where
Z = output grid with new data ranges
X = input grid
oldpin = minimum value of the input grid
oldnax = maximum value of the input grid
newnin = desired minimum value for the output
grid (0)
newmax = desired maximum value for the output
. grid (100)
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Figure 4. Histograms of the variables (elevation, tangential curvature, profile curvature, CTI, slope, and soil EC) used for principal component
analysis of Field 1 data.
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OPTIMUM NUMBER OF ZONES BASED ON YIELD ANALYSIS

Selection of variables to be used in the unsupervised
classification is the first step in the process of delineating
within—field management zones. The classification proce-
dure itself determines the boundaries of the zones based on
the spatial structure of the input variables, so no user
intervention is required in that step. However, the user must
somehow determine the correct or optimum number of zones
to create. It is logical to assume that evaluation of the
“goodness” of a zone should be based on an independent
mapped variable that integrates the effects of limiting factors.
Remotely sensed vegetative index maps or productivity maps
might be used to provide this independent evaluation.
However, in this study measured grain yield was chosen as
the evaluation variable.

The unsupervised classification procedure was used to
divide both fields into 2, 3, 4, 5, and 6 management zones.
The zones were created using elevation, slope, and soil EC
as input layers. Yield data for Field 1 (1993-1997) and Field
2 (1995-1997) were normalized by dividing the value
measured for each grid cell by the mean value for the entire
field. Yield statistics were calculated for each zone and year
in all maps. The main goal of this procedure was to determine
how much was gained in terms of yield “uniformity” within
a zone by dividing the field into additional zones. If we kept
dividing the field into a larger number of zones, ultimately
there would be as many zones as grid cells and no yield
variability within a zone. Yield variances for each zone were
weighted based on the area of the zone as follows:

n
=L Y -mrxlz 3)
ny Z i=1 nr
where

S2. = weighted variance for zone Z
Y; = yield measured for cell i
m = mean of measured yield in zone Z
nz = number of cells in zone Z
nr = total number of cells in the map

The decrease in within—zone yield variance was used to
select the most appropriate number of zones. Total
within—zone yield variance of a map (S12) was defined as the
sum of weighted within—zone yield variances for each zone,
as follows:

s?r =312 +S%+...+S% “4)

RESULTS AND DISCUSSION

Yield patterns varied considerably from year to year due
to climate and crop differences. The 1993 growing season
was characterized by frequent and heavy rains, with total
precipitation of 157 cm. In lower parts of the landscape,
excess water reduced yields. The 1994 precipitation of 82 cm
was below the 58—year average of 92 cm, and the 5 cm of
rainfall received in July and August caused drought stress,
which reduced yields. In 1995, precipitation was 115 cm,
with an excessively wet planting season which again caused
stand problems and some yield reductions in the lower
portion of the landscape. In 1996, there was adequate
within—season precipitation (60 cm), and measured yields
across Field 1 were more uniform than yields for other years.
The 1997 growing season was characterized by a wet spring
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followed by mid—season drought stress during the pollination
period, which reduced corn yields in areas with eroded,
shallow topsoil.

PRINCIPAL COMPONENT ANALYSIS

Principal component analysis was performed for two sets
of Field 1 data. The variables included in the first data set
were elevation, slope, profile curvature, tangent curvature,
CTI, and soil EC. The second data set included the same
variables except for CTL. Removing CTI was done to test how
important this variable was in explaining the variability
observed in the field. Most of the information contained in
the CTI map was very similar to that provided by the soil EC
data. Areas with high CTI values were also areas with deep
topsoil and, consequently, lower soil EC. Areas with deeper
topsoil were areas where eroded material accumulated and
therefore were normally located in the lower and flatter areas
of the field. These areas were also subject to water
accumulation and higher soil moisture conditions character-
ized by higher CTI values.

Table 1 shows the percentage of the total data set variance
that could be explained by each principal component in the
analysis. The first principal component always explains the
largest fraction of the total data set variance. The second
component explains the next-largest fraction, and so on.
When the number of components equals the number of
original variables, 100% of the variance in the original
dataset is explained. In the case of the first data set with six
variables, the first and second principal components together
explained 63.1% of the variance, and the first four principal
components explained 87.2% of the variance. In the case of
the second data set, with five variables, the first principal
component explained 41.9% of the variance, and the first and
second principal components together explained 70.6% of
the variance.

Table 2 shows the loadings of the principal components of
each data set. Loadings express the relationship between
input variables and the principal components and indicate
which variables are influencing the model. The most
important variables are those that exhibit large loadings in
those principal components that explain most of the variance
in the data. It is clear that elevation was an important variable
in both data sets, having loadings of 0.94 and 0.93 in the first
principal component of data sets 1 and 2, respectively. Soil
EC was also important, with loadings of 0.77 and 0.93 in the
second principal component of data sets 1 and 2, respectively.
Slope had loadings of 0.55 and 0.93 in the third principal
component of data sets 1 and 2, respectively. CTI had
loadings of —0.15, —-0.53, and —0.54 in the first, second, and
third principal components of data set 1. Relative to
elevation, soil EC, and slope, CTI can be considered as a
variable of moderate importance for explaining the
variability found in Field 1. Neither profile nor tangent
curvature contributed much to the main principal compo-
nents.

Figures 5 and 6 show maps of principal components 1 and
2 of both data sets. The similarity of PC 1 to the elevation map
of the area (fig. 1) demonstrates that elevation is a dominant
variable in both data sets. Soil EC is dominant in PC 2, but
the effect of CTI can also be noticed in data set 1. The
drainage channel that corresponds to areas of high CTI can
be noticed in the PC 2 map (fig. 5).
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Table 1. Individual and cumulative percentage of total data set
variance explained by each principal component (PC).

Principal Variance Explained (%)
Data Set Component ™ TIndividual  Cumulative
Data set 1 PC1 34.4 34.4
(elevation, slope, PC2 28.7 63.1
profile curvature, PC3 123 75.4
tangential curvature,
CT%, and soil EC) bca s o2
PC5 4.2 91.4
PC6 8.6 100.0
Data set 2 PCl 419 41.9
(elevation, slope, PC2 28.7 70.6
profile curvature, PC3 14.0 84.6
tangen.tial curvature, PC4 6.8 91.4
and soil EC) PC5 8.6 100.0

Table 2. Variable loadings in the principal components calculated for
data sets 1 and 2.

Profile  Tangent  Soil

Variables  Elevation Slope CTI Curvature Curvature EC
Data PC1 0.94 -0.27 -0.15 0.03 0.04 -0.15
Setl PC2 0.12 031 -0.53 0.08 0.10 0.77
PC3 -0.03 055 -0.54 0.07 0.15 -0.61

PC4 0.32 071 051 -0.12 -0.33 0.08

PC5 0.05 0.13 036  0.62 0.69 0.04

PC6 -0.04  -0.07 -0.01 0.77 -0.62  -0.03

Data PC1 0.93 -030 na. 0.02 0.03 -0.21
Set2 PC2 0.28 023  na 0.06 0.06 0.93
PC3 0.23 093 na. 0.03 -0.01 -0.30

PC4 -0.06 -0.01 na. 0.53 0.84 -0.07

PC5 -0.02 -0.03 na. 0.85 —0.53 -0.01

The high loadings of elevation and soil EC in the main
principal components demonstrated that, at a minimum, they
should be considered in the unsupervised classification
procedure. Slope and CTI should also be taken into

Principal
Component 1

[] -24.1--14

21.3-44.0
44.0-66.7
66.7 - 89.5

~1.4 -213]

consideration but may have less effect on the delineation of
the zones. In fact, CTI is more relevant to the analysis if the
field being divided into zones has a pronounced drainage
pattern, as is the case for Field 1. Because loadings from
profile and tangential curvatures were small in the main
principal components, they could be excluded from the
unsupervised classification process.

UNSUPERVISED CLASSIFICATION

The unsupervised classification procedure was used to
delineate management zones in Fields 1 and 2, starting with
2 zones and further dividing the fields into a maximum of 7
zones. Less pronounced and possibly less interpretable
features were included as the number of zones increased.
Figure 7 shows the results obtained when Field 1 was
classified into 3 and 6 zones using 6 variables (elevation,
slope, profile curvature, tangential curvature, CTI, and soil
EC) for the clustering algorithm. The 3—zone classification
roughly follows the elevation and soil EC patterns of the field
(figs. 1 and 3). Zone 1 included the lower elevation area in the
north central portion of the field. Zone 2 included the upland
areas located in the southern half of the field. Zone 3 included
the sloping and shallow soils (high soil EC) located along the
east and west sides of the field.

In the 6-zone classification, the results can be interpreted
as a combination of elevation and soil EC layers. Zone 1
included the low elevation areas of the field near the drainage
channel and with deeper topsoil (low soil EC). Zone 2
corresponded to the side slopes that drain to the central
channel. Zone 3 included areas with medium elevations and
soil EC values. Zone 4 included areas of the field with gentle
slopes but relatively shallow topsoil (above average soil EC).
Zone 5 included the southern area of the field with gentle
slopes, higher elevation, and deep topsoil (low soil EC). Zone
6 included the shallow eroded soils adjacent to the east and
west boundaries of the field.

Principal
Component 2
[]-18.0- 6.7
6.7-31.5
31.5-56.3
Bl s563-81.0
81.0-105.8
N

Figure 5. Principal components 1 and 2 for Field 1, derived from data set 1 (elevation, slope, profile curvature, tangential curvature, CTIL, and soil EC).
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Figure 6. Principal components 1 and 2 for Field 1, derived from data set 2 (elevation, slope, profile curvature, tangential curvature, and soil EC).

Figure 8 shows the results obtained for classification of
Field 1 into 5 zones using 6 variables (elevation, slope, CTI,
profile curvature, tangential curvature, and soil EC), 4
variables (elevation, slope, CTI, and soil EC), and 3 variables
(elevation, slope, and soil EC). The resulting maps confirmed
the results obtained with the PCA, indicating that removing
the profile and tangent curvatures from the classification
process makes little difference in the delineation of the zones.
The zones obtained by clustering 6 and 4 variables were
basically the same. The results also indicated that removing
CTI and using only elevation, slope, and soil EC in the
classification process also resulted in very similar zones.

The results obtained from the automated process of
unsupervised classification using topographic attributes and
soil EC were somewhat similar to the Order 1 soil surveys
conducted in Field 1 on three different occasions by the

USDA Natural Resource Conservation Service (NRCS). In
1991, the Missouri State office of the USDA-NRCS
conducted an Order 1 survey (ISS91) at a 1:5,000 scale. In
1993, a revised order 1 soil survey (ISS93) was done with
more laboratory data analysis. Then in 1997, a team of soil
scientists from the Missouri State NRCS office and the
National Soil Survey Center in Lincoln, Nebraska, conducted
a third Order 1 soil survey (ISS97). The three surveys
included some similar patterns but were very different in their
level of detail, the soil types included, and the location of the
boundaries between soil types. Figure 9 illustrates the lack of
repeatability that can be encountered when using subjective
classification methods to generate soil zone boundaries. By
contrast, results obtained with an objective classification
method, such as the one proposed here, would be much more
repeatable.

Zone

AN B W=

Figure 7. Classification of Field 1 into 3 (left) and 6 (right) zones using 6 variables: elevation, slope, profile curvature, tangential curvature, CTI,
and soil EC.
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Zone

Figure 8. Classification of Field 1 into five zones using six variables: elevation, slope, profile curvature, tangential curvature, CTI, and soil EC
(left); four variables: elevation, slope, CTI, and soil EC (center); and three variables: elevation, slope, and soil EC (right).

Figure 10 shows the results obtained for the classification
of Field 1 into 5 zones using the map overlay approach
described by Sudduth et al. (1996). The map overlay method
divided the field into 5 sub—field areas on the basis of
elevation and topsoil depth. The field was first divided into
areas of low (<20 cm), medium, and high (>50 cm) topsoil
depth. The medium and high topsoil depths were then
sub—divided into the lower 1/3 of the landscape and the
higher 2/3 of the landscape. The low topsoil and high topsoil
zones—at low elevation—created by the map overlay
approach (fig. 10) were similar to zones obtained with the
unsupervised classification approach (fig. 8). However, the
other three zones were defined differently by the two
methods. The map overlay method placed over half of the
field into one zone, while the unsupervised classification
method divided the field into more equal sections.

OPTIMUM NUMBER OF ZONES BASED ON YIELD ANALYSIS
Yield data obtained for Field 1 (1993—-1997) and Field 2
(1995-1997) were used to investigate the optimal number of
zones to use when dividing a field. Figure 11 shows that
within—zone yield variance decreased as Field 1 was divided

into management zones. The yield variance for the entire
field not divided into zones (i.e., one management zone) was
used as the reference, or 100% level. In this case, the total
variance in yield data is within the zone. As additional zones
are implemented, an increasing part of the total yield
variance is explained by the zone partitioning (between—zone
variance), causing the total within—zone variance to
decrease. In Field 1, a maximum decrease in yield variance
was obtained by dividing the field into five management
zones. Depending on the year, little reduction or even an
increase in variance was obtained by further dividing the
field into six management zones.

For years in which the crop was subjected to water stress
(1994 and 1997), up to 32% of the yield variance was
explained by five zones. Similar results were found for a year
of adequate moisture (1996). In 1996, 26% of the yield
variance was explained by dividing the field into two zones.
Soybean yield in 1996 was more uniform due to adequate soil
moisture throughout most of the cropping season, and the
division of the field into two zones was enough to obtain a
substantial decrease in yield variability within zones. In the
case of 1994 and 1997, within—zone variance decreases of
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Figure 9. NRCS Order 1 soil surveys of Field 1: ISS91 (left), ISS93 (center), and ISS97 (right).
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Figure 10. Zones defined for Field 1 by the map overlay method.

only about 6% were obtained by dividing the field into two
management zones. Larger decreases for these years were
obtained by further dividing the field into as many as five
management zones.

Insufficient precipitation during critical pollination and
seedfill periods caused more yield variability due to
differences in water holding capacity associated with
landscape position. In 1993 and 1995, the maximum yield
variance explained. by dividing the field into five
management zones was 12% and 10%, respectively.
Similarly to 1996, most of this decrease in within—zone
variance was obtained by dividing the field into two zones.
Above-average precipitation during the 1993 cropping
season caused yield to be more uniform in the upper areas of
the field, independent of topsoil depth, and to be reduced in
the lower areas due to excess water.

The results obtained indicate that the optimum number of
zones to use for dividing a field is a function of weather
conditions and the crop planted. Division of Field 1 into five

management zones (fig. 12) seems to be the most
appropriate, especially during years in which water stress
conditions are present and more drought—susceptible crops,
such as corn, are planted. If adequate or excess moisture
conditions occur, then management zones located in the
upper areas of the field will probably behave similarly. Table
3 shows the mean elevation, soil EC, and slope values for
each of the management zones defined for both fields.

Figure 13 shows the average normalized yield for the five
zones of Field 1. Average normalized yield for zone 1, the
lower elevation area of the field, was quite variable, ranging
from 0.96 in 1993 to 1.24 in 1994. This result was not a
surprise since the low areas of the field generally have lower
yields during years of excessive precipitation, such as 1993,
and high productivity during dry years, such as 1994. The
average yields were very similar for the dry years of 1994 and
1997 throughout the various zones, except for zone 4, which
had a lower average in 1994. Zone 4 is an area of flat
topography located toward the south side of the field. It
presented quite “stable” yields for all the other years used in
the analysis, suggesting that, in 1994, a factor not considered
in the classification procedure may have had a negative
impact on yield in this zone. Zones 2 and 5 presented quite
similar behavior, with lower average yields during dry years
and “normal” (close to 1.0) average yields during years of
excessive or adequate rainfall. Zones 2 and 5 are located on
sloping shallow eroded soils, and lower yields during dry
years are not unexpected. Zone 3 was more consistent in
terms of yield, and for most of the years, its average
normalized yields were close to 1.0.

Figure 14 shows the percent of yield variance explained
in Field 2 by dividing the field into management zones. A
maximum decrease in within—zone yield variance of 37%
was obtained by dividing the field into four management
zones. Most of the yield variance was explained by dividing
the field into two zones. However, further division into four
zones decreased the total variance by an additional 6% in
1996 and 1997.
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Figure 11. Portion of within—zone yield variance remaining after dividing Field 1 into management zones.
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Figure 12. Optimum number of management zones determined for Field 1 (left) and Field 2 (right).
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Figure 13. Calculated average normalized yield of five potential management zones defined for Field 1 (1993-1997).

Table 3. Elevation, soil EC, and slope of optimum management zones
defined for Fields 1 and 2.

Mean Elevation Mean Soil EC Mean Slope

Field Zone (m) (mS/m) (%)
1 1 262.6 37.1 0.74

2 263.3 434 0.94

3 264.0 39.7 0.57

4 264.9 38.1 0.51

5 263.9 50.9 0.88

2 1 261.5 30.0 0.22

2 262.2 373 0.74

3 263.8 325 0.31

4 263.1 35.4 0.58
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Figure 15 shows the average normalized yield for the four
zones of Field 2. Comparison of figure 15 with figure 13
shows that the yield variation between zones was similar for
the two fields in 1996 and 1997. However, in 1995, the
between—zone yield differences were much higher for Field
2, due to differences in planting dates and crops grown. In that
year, Field 2 was planted to soybean, and significant yield
reductions were seen due to excess water in the lower
elevation areas. Field 1 was planted to grain sorghum at a
later date in 1995, so early—season excess moisture did not
affect crop stands in that field.

Average yield for zone 1 (the lower elevation area) of
Field 2 was variable, ranging from 0.74 in 1995 to 0.94 in
1996. In addition, average yields for this zone were always
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below the field average for the 3 years analyzed, which
differs from the results obtained for the lower elevation areas
of Field 1. The lower yield for zone 1 in 1995 can be
explained by the above—average precipitation that year,
which caused excess moisture conditions in the lower
elevation areas of the field. However, the average yield for
zone 1 was also lower in 1996 and 1997, despite the fact that
deeper topsoil (lower soil EC) is found in that area of the
field. In fact, most of the area included in zone 1 was
replanted in 1997 due to emergence problems caused by a wet
spring. This suggests that drainage should be considered as
a valid management option to increase yields in zone 1.

Results obtained for zone 2 were quite similar to zone 1,
with measured yields normally under the field average. Zone
2 is located at lower elevations and includes areas with
shallow topsoil depths. Average yields for 1996 and 1997
were quite stable for all zones. However, in 1995, the excess
precipitation in early spring decreased yields in the lower
parts of the field.

Zone 3 is the highest producing area of Field 2, with
normalized average yields ranging from 1.07 in 1996 to 1.13
in 1995. Zone 3 is located in the upper areas of the field with
medium and high topsoil depths (medium to low soil EC).
The normalized average yields for zone 4 were 1.1 in 1995
and slightly under 1.0 for 1996 and 1997. Zone 4 does not
present major drainage problems, but it includes areas with
shallow topsoil depths (higher soil EC readings).

Zones created by the unsupervised classification
procedure were compared to the zones from the NRCS Order
1 surveys and the map overlay classification on the basis of
yield variance (table 4). In almost all cases, the zones defined
by the optimum unsupervised classification offered a better
explanation of yield variation than the zones created by the
other approaches. The unsupervised classification procedure
was generally better at defining soil zone boundaries on Field
1 than the map overlay or NRCS procedures that also
generated 5 zones. Only in one of five years was another
classification procedure (the NRCS Order 1 survey for 1993)
better than the unsupervised classification at explaining yield
variation.
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Figure 14. Portion of within—zone yield variance remaining after
dividing Field 2 into management zones.
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Table 4. Within-zone yield variance remaining after unsupervised
classification (with optimum no. of zones), map overlay classification,
and NRCS Order 1 classification.

No. Within Zone Yield Variance
Classification of Remaining (%)
Field Method Zones 1993 1994 1995 1996 1997
1 Optimum unsupervised 5 889 71.1 902 69.6 69.0
Map overlay 5 964 78.0 96.1 954 778
NRCS Order 1 — 1991 3 984 734 977 994 902
NRCS Order 1 - 1993 5 968 655 91.8 994 76.2
NRCS Order 1 - 1997 7 976 747 892 974 859
2 Optimum unsupervised 4 na. na. 633 775 78.0
Map overlay 5 na. na. 67.7 824 3821
- 1.2
5 S NI
g 0.8 mZone
> oZone
: 0.6 oZone
8 0.4 B Zone.
©
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Figure 15. Calculated average normalized yield of four potential
management zones defined for Field 2 (1995-1997).

CONCLUSIONS

Unsupervised classification of topographic attributes and
soil EC for delineating potential within—field management
zones was applied to two fields and the results analyzed.
Principal component analysis of the input variables for one
of the fields (Field 1) indicated that elevation and soil EC are
the most important attributes to include when performing
unsupervised classification in claypan soils. Slope and CTI
are less important but may also be considered in the process.
Evaluation of the resulting management zones using yield
data indicated that, up to a point, within—zone yield variance
generally decreases by increasing the number of zones. The
case of little improvement in within—zone uniformity may
suggest that either yield is uniform across the entire field, or
important factors causing yield variability were not taken
into consideration when determining the zones.

Yield data were used to determine the optimum number of
zones when dividing a field. The optimum number of zones
may vary from year to year and is mainly a function of
weather and the crop planted. The number of zones decreases
if adequate moisture conditions are present throughout the
cropping season or if crops more tolerant to water stress are
planted. Division of the field into a larger number of zones is
generally recommended during years with below—average
precipitation or when crops are subjected to water stress
during critical periods of development.

Future work is required to investigate the weighting that
should be given to each year’s yield map in determining the
optimum number of management zones. Frequency analysis
of precipitation data could be a practical approach to
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determine the degree of importance of a given year. More
importance or weight should be given to years with “typical”
weather patterns. This analysis becomes more important
when a limited number of yield maps is available and when
the data include years of atypical weather.

Delineation of management zones based on topographic
attributes and soil EC is a valid approach to capturing yield
variability due to differences in plant water availability.
Additional layers of information that may be considered
important for characterizing the yield variability observed in
a field, such as remote sensing images, crop scouting maps
for diseases or insect damage, and soil fertility and pH maps,
can easily be added to the unsupervised classification
process. The methodology is fast, can be easily automated in
commercially available GIS software, and has considerable
advantages when compared to other methods for delineating
within—field management zones.
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