Remote sensing for nitrogen management
P.C. Scharf, J.P. Schmidt, N.R. Kitchen, K.A. Sudduth, S.Y. Hong, J.A. Lory, and J.G. Davis

ABSTRACT: Nitrogen application often dramatically increases crop yields, but N needs vary
spatially across fields and landscapes. Remote sensing collects spatially dense information that
may contribute to, or provide feedback about, N management decisions. There is potential to
accurately predict N fertilizer need at each point in the field. This would reduce surplus N in the
crop production system without reducing crop yield, which would in turn reduce N losses to
surface and ground waters. Soil spectral properties (color) are related to soil organic matter and
soil moisture levels, factors that influence the N-supplying ability of the soil. Plant spectral
properties reflect crop N status and soil N availability, and they can be useful for directing in-
season variable-rate N applications. Plant color may also be useful for assessing the adequacy of
crop nitrogen supply achieved with a given nitrogen management practice. We outline the
current status of these approaches, offer examples, discuss several N management contexts in
which these approaches might be used, and consider possible future directions for this
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technology.

Keywords: Aerial, imagery, nitrogen, satellite, soil organic matter, spectral, variable-rate

Current nitrogen management practices
for most crops consist of a single applica-
tion of a uniform rate of N fertilizer over
whole fields and, frequently, whole farms.
These practices contrast sharply with a sub-
stantial and growing body of research that
shows that optimum N rate can vary quite
widely from field to field (Scharf et al. 1993;
Schmitt and Randall 1994; Bundy and
Andraski 1995), as well as from place to place
within a single field (Malzer et al. 1996;
Blackmer and White 1998; Harrington et al.
1997; Schmidt et al., in press). Three of four
fields studied by Malzer et al. (1996) had
optimum N rates ranging from 0 to 200 kg N
ha’ (0 to 180 Ib N ac™). Harrington et al.
(1997) found that optimum N rate varied by
94 kg N hat (84 Ib N ac?) within a single
field in Illinois, and optimum N rate varied
by 225 kg N ha? (200 Ib N ac?) in a
Missouri experiment presented later in this
paper. However, Bundy (2002) found little

variability in optimum N rate in six corn
fields in Wisconsin. A better understanding of
where and when large spatial variations in
optimum N rate occur will help define when
remote sensing might contribute to improved
N management.

Both soil N supply and crop N demand
can vary spatially. Considerable research
shows only a weak relationship between opti-
mum N rate and corn vyield (Vanotti and
Bundy 1994; Scharf 2001; Blackmer et al.
1992) (Figure 1). Because crop N demand is
closely related to biomass and vyield, this

Peter C. Scharf, John A. Lory, and ). Glenn Davis
are with the University of Missouri in Columbia,
Missouri. John P. Schmidt is with Kansas State
University in Manhattan, Kansas. Newell R.

Kitchen and Kenneth A. Sudduth are with the U.S.
Department of Agriculture’s Agricultural Research
Service in Columbia, Missouri. S. Young Hong is
with the National Institute of Agricultural Science
and Technology in Suwon, Korea.




Figure1

In 197 corn N-rate experiments over four states, yield (and therefore, yield goal) was not a good
predictor of optimum N fertilizer rate. Yield is a surrogate for N demand. The implication is that
variability in optimum N rate is created more by variations in supply than in demand. We thank

Bob Hoeft, Dick Fox, and Michael Schmitt for sharing their data with us.
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suggests that variability in optimum N fertil-
izer rate is controlled more by variability in
soil N supply than by variability in crop N
demand. Spatial variability in soil N supply
may be caused by variability in soil organic N
content, variability in the rate of release of
organic N, and variability in N loss. All of
these are controlled primarily by variability in
soil water relations: drainage, hydraulic con-
ductivity, landscape position, and water-flow
paths and velocities. In semiarid regions,
where N loss caused by leaching and denitri-
fication is low, crop factors might play a larger
role in controlling spatial variability in need
for N fertilizer.

Recent technical advances have made
spatially variable applications of nitrogen
accessible to many crop producers. The main
obstacles to adoption of spatially variable N
management are the inconvenience, expense,
and limited accuracy of currently available
methods for predicting how much N to apply
and where. One of the strengths of remote
sensing is the ability to collect spatially dense
information quickly over large areas, thus
creating the potential to supply information
about spatial variability of N need that is
cheaper and more convenient than currently
used sources. A considerable research effort is
under way to learn how to translate remotely
sensed information into accurate N-rate
recommendations.

Predicting N Fertilizer Need with Remote
Sensing

Remote sensing from aerial or satellite plat-
forms has long been considered a promising
source of information for land management
decisions (Johannsen and Barney 1981).
Several barriers have impeded the adoption
of remote sensing for crop management deci-
sions, including image availability, timeliness,
spatial resolution, susceptibility to weather
conditions, and limited knowledge of how to
translate images into management decisions.
As additional infrastructure is developed and
new platforms become available, these barri-
ers are slowly being reduced. In addition,
progress is being made in understanding how
to interpret images to make good manage-
ment decisions.

Remote sensing of soil N supply to predict
N fertilizer need. Soil organic matter (or
organic carbon) content and water content
are generally the two soil properties most
correlated to soil reflectance in bare soil
images (Zheng and Schreier 1988). Soils with
greater organic matter content or water
content will have lower reflectance (Krishnan
et al. 1980). Many fields have large variations
in soil organic matter content and bare soil
color (Figures 2 and 3).

Chen et al. (2000) developed an algorithm
using reflectance from a remotely sensed
color photograph to predict soil organic car-
bon. For 31 sample locations within the same
field (samples not used in the development
of their algorithm), predicted soil organic car-

bon was very similar to measured soil organic
carbon (measured=0.9975[predicted]; r’=
0.98). They used sophisticated techniques to
filter images and segregate pixel values. Even
with a simple approach, the relationship
between relative radiance from a bare soil
image and soil organic matter is quite distinct
(Figure 3; r>=0.47). Although remote sensing
may be used to construct maps of predicted
soil organic matter content with reasonable
accuracy, we are far from having an equation
that makes this prediction across a range of
soil types and soil moisture levels. The utility
of a soil organic matter map is based on the
premise that N mineralization, and subse-
quently N availability to the growing crop,
will be proportional to organic matter con-
tent. With spatially dense data obtained
through remote sensing, a variable N applica-
tion map that is a function of soil organic
matter could then be developed.

This premise is sometimes borne out—soil
nitrate levels are higher in areas with darker
soil (Blackmer and White 1998; Walters et al.
1999), and economic response to N is greater
in areas with lighter soil (White and
Blackmer 2001). In other cases, yield response
to N may not be consistently related to soil
organic matter level or relative soil reflectance
(Schmidt et al. 1999; Schmidt et al. 2002).
There are several likely reasons for this incon-
sistency. At low soil organic matter levels,
other soil factors may significantly influence
reflectance (Baumgardner et al. 1970). Also,
availability of N from soil of known organic
matter content can vary widely because of
other soil characteristics, such as water con-
tent, pH, and dissolved organic carbon. These
properties have a significant impact on N
cycle processes including mineralization,
immobilization, denitrification, and leaching.
A particular concern is that areas in a field
with the highest organic matter content and
potentially mineralizable N may also be the
wettest areas, with the greatest potential for
N loss via denitrification and/or leaching.
In wet years, these areas may have lower N-
supplying capacity than other parts of the
field, and in drier years, they may have greater
N-supplying capacity. Year-to-year weather
variability will be an obstacle in developing
reliable N application maps based on soil
organic matter content.

Remote sensing of crop N status to predict
N fertilizer need. A considerable research
effort has been devoted to detecting crop N
stress using remote sensing. This includes a
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Figure 2

Bare-soil aerial photograph of a Kansas field with large variations in soil reflectance and soil
organic matter content. Organic matter in this field varies from 7 to 33 g kg™*. Darker areas are
higher in organic matter. These areas may release more organic N to crops and require less
fertilizer N, but research results to date have revealed inconsistencies that need to be resolved
before this system could be widely used.

Figure 3
Radiance in the red band measured from the photograph in Figure 2 is predictive of soil organic
matter content (n=103).
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substantial and promising body of work with
ground-based sensors, but we will limit the
scope of our discussion in this paper to the
more traditional meaning of remote sensing:
sensing from aerial or satellite platforms. In
general, different levels of nitrogen stress can
be easily detected in aerial images (Blackmer
et al. 1996; Ashcroft et al. 1990; Beatty et al.
2000; Blackmer and White 1998). Nitrogen
stress increases canopy reflectance over all
visible wavelengths (Blackmer et al. 1996;
Beatty et al. 2000) because of a shortage of
chlorophyll and other light-absorbing pig-
ments. Nitrogen stress may also decrease
canopy reflectance in near-infrared wave-
lengths (Beatty et al. 2000; McMurtrey et al.
1994). Indexes combining information from
visible and near-infrared regions may maxi-
mize sensitivity to N stress.

One obstacle to using remotely sensed data
to make N management decisions is that
many crops have not developed a full canopy
at the time that in-season N management
decisions are traditionally made. Soil
reflectance is often greater than crop
reflectance in visible wavelengths and can
therefore interfere with remote estimates of
crop reflectance. Several groups have begun
to develop indexes that are sensitive to plant
color in mixed soil-plant scenes (Daughtry et
al. 2000; Gitelson et al. 1996; Baret and Fourty
1997; Clarke et al. 2000).

Only recently have attempts been made to
develop and evaluate decision algorithms for
N management based on remote sensing.
Scharf and Lory (2002) have developed a
decision algorithm for sidedressing corn
based on aerial photographs. This algorithm is
based on green light intensity from unfertil-
ized corn relative to well-fertilized corn; the
larger the difference in color, the more side-
dress N is recommended for the previously
unfertilized corn. An aerial view of corn at
normal sidedressing time is more than half
soil. In order to accurately measure crop
spectral properties despite the large soil back-
ground, Scharf and Lory (2002) used very
high-resolution images (pixel size 5cm or less)
and discarded soil pixels from these images.
This process greatly increased their ability to
predict N need of the corn from measured
spectral properties.

Scharf and colleagues at the University of
Missouri have begun to evaluate the algo-
rithm of Scharf and Lory (2002) in field-scale
experiments, and have completed analysis for
one experiment, which we present here. The



Figure 4

unfertilized strips was large.

+ E1 3R}

L= o ]

— -
10500
qi07eal

P L

-11!:.':3!--'___'___'

Predicting N need of corn in an experiment in southeastern Missouri in 2000. The top panel is an aerial photograph acquired at corn growth stage
V8 (very late sidedress). Using the prediction algorithm developed by Scharf and Lory (in press) (graph to the left of the photograph), corn color
information from the photograph was used to predict N fertilizer need for each 20 m section. Predictions are shown as grayscale rectangles for
each 20 m section. Predicted N need was much higher in the eastern half of the experiment, where the difference in color between fertilized and
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experiment was conducted in southeastern
Missouri in 2000 on an alluvial soil. Soil
cation exchange capacity ranged from 13 to
27 cmol kgt (13 to 27 meg/100 g). Soybean
was the previous crop. Treatments were N
rates (0, 56, 112, 168, 224, 280 kg N hal)
(equal to 0, 50, 100, 150, 200, 250 Ib N ac™?)
applied to plots 6 rows wide by 0.4 km (0.25
mi) in length. The experimental design was a
randomized complete block with four repli-
cations. Corn grain was harvested from the
center four rows of each plot using a combine
instrumented with a grain yield monitor and
global positioning system.

Data was analyzed primarily at a spatial
scale considerably smaller than replications.
Replications were divided into sections 20 m
(65 ft) long, and both yield data and aerial
photo data were analyzed separately for each
individual 20 m section. The experiment
included 65 of these sections.

The aerial photograph in Figure 4 was
acquired at corn growth stage V8 (Ritchie et
al. 1993). This photograph, while covering an
area 0.8 km long, has very fine resolution
with a pixel size of 5 cm (2 inches). Individual
rows and plants can be clearly seen in the
detail view shown in Figure 4. Soil pixels
were discarded from the image, and an empir-
ical algorithm analogous to that developed by
Scharf and Lory (2002) but specific to growth
stage V8 (shown on the left side of Figure 4)
was applied to the remaining plant pixels to
produce N-rate recommendations. This algo-
rithm is based on the ratio between green-

light radiance from unfertilized strips relative
to green radiance from well-fertilized strips.
The larger the difference in radiance, the
greater the presumed N stress and the higher
the N rate recommended. Spatial units were
the 20 m (66 ft) sections described above. A
class map of the N rates predicted using the
aerial photograph is shown at the bottom of
Figure 4. Each gray rectangle represents one
20 m (66 ft) section, and the shade of gray
indicates the N rate predicted from the aerial
photograph for that section. The most notice-
able feature of the predicted N rates is that
they are much lower in the western half of
the field than in the eastern half.

We were able to evaluate the N rates pre-
dicted from the aerial photo by comparing
them with actual optimum N rates deter-
mined by yield response to a range of applied
N rates. Each 20 m (66 ft) section contained
N-rate treatments ranging from 0 to 280 kg
N ha (0 to 250 Ib N ac™), and we measured
the corn yield produced by each N rate.
Yield response to N rate was described in
each section using a quadratic-plateau func-
tion. Two examples are shown in the top of
Figure 5, and similar functions were produced
for all 65 of the 20 m (66 ft) sections in the
experiment. Economically optimum N fertil-
izer rate was then calculated from these yield
response functions for each 20 m (66 ft) sec-
tion. The spatial distribution of optimum N
fertilizer rate is shown in Figure 5. Each gray
rectangle represents one 20 m (66 ft) section,
and the shade of gray indicates the optimum

N fertilizer rate. Sections containing the pivot
road and the drainage channel seen in the
aerial photograph in Figure 4 are omitted
from the analysis.

Optimum N rates varied widely in this
experiment and were fairly evenly distributed
between 55 and 220 kg N ha™ (50 and 200
Ib N act) with a few higher values (Figure 5).
This variation was not due to variability in
yield.Yield variability was much smaller, and
yields were highest at the west end of the
experiment, where optimum N rates were
lowest. Neither was variability in optimum N
rate attributable to variability in soil mineral
N content. Soil samples were taken both pre-
plant and sidedress for four main zones.
Preplant mineral N to 60 cm (2 ft) depth was
78, 60, 50, and 50 kg N ha* (70, 54, 54, and
45 |b N ac™?) for the four zones in order from
west to east. Presidedress nitrate to 30 cm
(1 ft) depth was 10, 8,5,and 5 mg N kg* soil
(10, 8, 5, and 5 ppm) for the four zones in
order from west to east. Although soil mineral
N was highest at the west end of the field
where optimum N rates were lowest, normal
interpretation of these test values would
suggest only small differences in N rates
recommended from one end of the field to
the other.

The wide range of optimum N rates
observed suggests that variable-rate applica-
tion of N would have been appropriate for
this field. Nitrogen fertilizer rates predicted
from the aerial photo are juxtaposed with
actual optimum N rates in Figure 5 for com-
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Evaluating the quality of the N-rate recommendations shown in Figure 4. N-rate strips from o to 280 kg N ha* (o to 250 lb N ac?) were applied east to
west in this experiment. Yields were collected with a yield-monitor-equipped combine, and yield response to N rate was analyzed for sections 20 m
long by one replication wide. Example yield response graphs are shown for two 20 m sections, with an arrow indicating the section corresponding to
the graph. Similar graphs were constructed for the other 63 sections, and economically optimum N rates were calculated for each section from these
response functions. Actual optimum N rates calculated in this way are coded by color. Optimum N rate was generally less than 120 kg N ha* (110 Ib N
ac®) in the western half of the experiment and more than 120 kg N ha in the eastern half of the experiment. N rates predicted from the aerial photo
also followed this pattern. Sections containing the pivot road and the drainage channel seen in the aerial photograph in Figure 4 are omitted from the

Optimum N rate from yield response data
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parison. Actual optimum N rates were much
lower in the western half of the field, in rough
agreement with the pattern of N need pre-
dicted from the aerial photo. While there are
substantial differences between predicted N
need and actual optimum N rate in many of
the sections, N rates predicted from the aeri-
al photo performed well economically and
environmentally. Photo-predicted N rates
were inserted into response equations (e.g.
graphs in Figure 5) to derive the yields that
would have been produced by these N rates.
The average N rate predicted from the photo
was very close to the average optimum N
rate, but because of under-recommendation
in a few areas, a small amount of yield would
have been lost by following these predictions
(Table 1). Average yield in the experimental
area was 11.7 Mg ha? (186 bu ac™). The
current University of Missouri N-rate
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recommendation for this yield level would be
220 kg N ha' (195 Ib N ac?®) for corn
following soybean. The N rates predicted
from the aerial photograph were on average
38% lower and resulted in only a 2% reduc-
tion in corn yield relative to current recom-
mendations.

This example shows the potential for
remote sensing to be used in directing vari-
able-rate in-season N applications that match
actual crop needs relatively well. It is only a
single example and should be interpreted
cautiously. This potential needs to be demon-
strated over a range of environments before
recommendations based on aerial images
could be considered reliable. There do not yet
appear to be any other published reports of
variable-rate nitrogen recommendations
based on aerial or satellite images that would
help to evaluate the reliability of this

approach. However, there are a number of
reports of variable-rate N applications based
on measurements of crop spectral properties
with ground-based sensors (Bausch and Duke
1996; Stone et al. 1996; Heege and Reusch
1996). Even if N-rate recommendations
based on aerial or satellite images are shown
to be reliable, there are still many obstacles
remaining and details to be worked out for
wide-scale commercial application to a range
of crops.

Remote Sensing of Crop N Status to
Provide Feedback on N Management

Remote sensing is ideal as a feedback tool
because of its ability to survey large areas
quickly. This type of feedback might be use-
ful when N rates are tightly managed or
when in-season losses of N may have
occurred. Currently, many producers use



Table 1. Comparison of N rates, yields, and returns for two N recommendation systems rel-
ative to optimum N rates for the experiment shown in Figures 4 and 5.

Recommendation Grain value
system Mean N rate Mean yield minus N cost
kg N ha? Mg ha? $ hat
Aerial photo 137 b 11.46 ¢ 826 b
University of Missouri 220 a 11.71a 783 c
Optimum 130 b 11.68 b 847 a

Values followed by different letters within a column are significantly different (p<0.001)
according to a paired t test. N rates recommended by the aerial photo were not
significantly different than optimum N rates (p=0.21).

generous N rates that minimize the chances
that yield will be limited by N availability. If
N rates are managed more tightly for eco-
nomic or environmental reasons, the inci-
dence of N deficiencies will increase.
Detecting these deficiencies, preferably soon
enough to respond with additional N appli-
cations, will help to minimize risk and make
tight N management systems economically
competitive. Manure as a nitrogen source has
a considerably higher uncertainty and risk
than fertilizer N, so feedback on N sufficien-
cy may be particularly important in systems
depending on manure N availability. When
manure N is managed based on a mandatory
nutrient management plan, remote sensing
may help to evaluate whether the crop is
receiving sufficient N under the management
plan.

Advantages and Limitations of Remote
Sensing for N Management

The main advantages of remote sensing for N
management are the spatial detail of the
information that is collected and the speed
with which information can be collected and
possibly assessed over large areas. The concept
that N needs of crops often vary substantially
across fields and landscapes is now fairly well-
established, and remote sensing may be one of
our best tools for understanding and respond-
ing to this spatial variability. The ability to
cover large areas quickly makes remote sens-
ing an ideal feedback tool for evaluating N
management decisions made early in the sea-
son.

Limitations of remote sensing for N
management include availability, timeliness,
spatial resolution, susceptibility to weather
conditions, and limited knowledge of how to
translate images into management decisions.
Currently, there are not enough satellite- or
airplane-based sources of remote sensing data
to make remote sensing information reliably
available to producers. Competition for satel-
lite imagery is keen, particularly for the new

generation of higher-resolution satellites.
Angle of image acquisition may be an issue
with these satellites, as well. Older satellites
may have spatial resolution that is too coarse
to be effectively used in N management. The
remote sensing industry is not accustomed to
providing images acquired at specific times
and delivered quickly (as would be the case
for N management), and it is not currently
structured to provide this type of service.
Satellites may take too long between succes-
sive passes over a specific area to provide
information for time-sensitive management
decisions. If and when these obstacles are
overcome, difficulties with weather will
remain. Good images require nearly cloudless
conditions, and even then atmospheric
corrections can be complex.

Our limited knowledge of how to translate
images into management decisions is still a
severe limitation to the use of remote sensing
for N management. The ability to detect N
stress with remote sensing is well-documented
in the scientific literature, but a considerable
effort is still needed to develop management
systems and decision algorithms that can be
shown to be reliable enough to justify adop-
tion by producers.

Summary and Conclusions

e Crop N needs are often spatially variable.

« Remote sensing provides spatially dense
information that may help us understand
and predict spatially variable crop N
needs.

 Variable-rate N applications might be
based on remote sensing of soil color or
crop color.

e Sensing of crop color could provide
feedback on the performance of N man-
agement decisions.

* Availability, spatial and temporal resolu-
tion, and interpretation of remotely
sensed images are current limitations on
the use of remote sensing for N manage-
ment that may be overcome in the
future.

» Weather will always be an obstacle in
acquiring remotely sensed images in a
timely manner for use in making N
management decisions.
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