TECHNICAL REPORTS

Atmospheric Pollutants and Trace Gases

Ammonia Volatilization from Marsh–Pond–Marsh Constructed Wetlands Treating Swine Wastewater

M. E. Poach,* P. G. Hunt, G. B. Reddy, K. C. Stone, T. A. Matheny, M. H. Johnson, and E. J. Sadler

ABSTRACT

Ammonia (NH₃) volatilization is an undesirable mechanism for the removal of nitrogen (N) from wastewater treatment wetlands. To minimize the potential for NH₃ volatilization, it is important to determine how wetland design affects NH₃ volatilization. The objective of this research was to determine how the presence of a pond section affects NH₃ volatilization from constructed wetlands treating wastewater from a confined swine operation. Wastewater was added at different N loads to six constructed wetlands of the marsh-pondmarsh design that were located in Greensboro, North Carolina, USA. A large enclosure was used to measure NH₃ volatilization from the marsh and pond sections of each wetland in July and August of 2001. Ammonia volatilized from marsh and pond sections at rates ranging from 5 to 102 mg NH₃-N m⁻² h⁻¹. Pond sections exhibited a significantly greater increase in the rate of NH₃ volatilization (p < 0.0001) than did either marsh section as N load increased. At N loads greater than 15 kg ha⁻¹ d⁻¹, NH₃ volatilization accounted for 23 to 36% of the N load. Furthermore, NH₃ volatilization was the dominant (54-79%) N removal mechanism at N loads greater than 15 kg ha⁻¹ d⁻¹. Without the pond sections, NH₃ volatilization would have been a minor contributor (less than 12%) to the N balance of these wetlands. To minimize NH₃ volatilization, continuous marsh systems should be preferred over marsh-pond-marsh systems for the treatment of wastewater from confined animal operations.

CONSTRUCTED WETLANDS remove N from wastewater by sedimentation, adsorption, organic matter accumulation, nitrification–denitrification, microbial assimilation, and NH₃ volatilization (Brix, 1993; Johnston, 1991). Of these mechanisms, NH₃ volatilization is the least desirable because NH₃ gas is an atmospheric pollut-

Published in J. Environ. Qual. 33:844–851 (2004). © ASA, CSSA, SSSA 677 S. Segoe Rd., Madison, WI 53711 USA ant that can adversely affect terrestrial and aquatic environments through dry and wet deposition (Asman, 1994). This pollution potential has generated concerns that NH₃ volatilization may govern nitrogen loss from wetlands treating wastewater from confined animal operations because the wastewater ammoniacal N concentration is greater than 20 mg L⁻¹ (Payne and Knight, 1997). To be an effective waste management tool, constructed wetland systems should be designed to minimize NH₃ volatilization.

Two wetland designs used in the treatment of animal wastewater are continuous marsh and marsh–pond– marsh. Research on continuous marsh systems verified that NH_3 volatilization did occur when they received swine wastewater, but the volatilization was a minor contributor to the N budget of the wetlands (Poach et al., 2002, 2003). Ammonia volatilization generally accounted for less than 20% of the N removed by these wetlands even though they received wastewater with N concentrations as high as 300 mg L⁻¹.

Because a marsh–pond–marsh system is a continuous marsh system bisected by a pond section, the marsh sections should exhibit rates of NH_3 volatilization similar to a continuous marsh. Therefore, based on results from the continuous marsh, NH_3 volatilization from the marsh sections is expected to be a minor component of the N budget of marsh–pond–marsh systems. However, the presence of the pond section prevents conclusions about the magnitude of NH_3 volatilization for the complete system.

The pond section was added to the design of treatment wetlands with the intent of enhancing nitrification (Hammer, 1994; Reaves, 1996). Research on continuous marsh wetlands treating swine wastewater indicated that NH₃ volatilization was reduced when the wastewater was nitrified before wetland application (Poach et al., 2003). If the pond section enhances nitrification then it may also reduce NH₃ volatilization, but research on marsh–pond–marsh systems receiving swine wastewater do not support the contention that the pond section enhances nitrification of the wastewater. Marsh–pond– marsh systems did not improve N removal compared with continuous systems as would be expected if the

M.E. Poach, P.G. Hunt, K.C. Stone, T.A. Matheny, and M.H. Johnson, USDA-ARS, Coastal Plains Soil, Water, and Plant Research Center, 2611 West Lucas Street, Florence, SC 29501. E.J. Sadler, USDA-ARS, University of Missouri, Columbia, MO 65211. G.B. Reddy, Department. of Natural Resources and Environmental Design, North Carolina A&T State University, Greensboro, NC 27411. Mention of trade name, proprietary product, or vendor is for information only and does not constitute a guarantee or warranty of the product by the USDA and does not imply its approval to the exclusion of other products or vendors that may also be suitable. Received 9 Apr. 2003. *Corresponding author (poach@florence.ars.usda.gov).

pond section enhanced nitrification of the animal wastewater (Moore and Niswander, 1997). Therefore, pond sections may not reduce NH₃ volatilization.

Research on anaerobic lagoons containing swine wastewater have shown that NH_3 volatilization is affected by wind blowing across the lagoon surface (Harper et al., 2000). The pond section is similar to a waste lagoon and, compared with the marsh it replaces, has a greater surface area exposed to the wind. Therefore, the pond section could enhance NH_3 volatilization from marsh–pond–marsh wetlands compared with wetlands without a pond section.

This research was part of a larger project investigating the ability of marsh–pond–marsh constructed wetlands to treat wastewater from a confined swine operation. The objective of this research was to use a steady-state enclosure to quantify NH₃ volatilization from these marsh–pond–marsh wetlands. Specific objectives were to determine (i) the contribution of NH₃ volatilization from the marsh sections to the overall N removal of marsh–pond–marsh systems and (ii) the effect of the pond section on the NH₃ volatilization potential of constructed wetlands.

MATERIALS AND METHODS

Site Description

The experiment was conducted using six marsh-pondmarsh wetlands at the swine facility (130–250 sows) of the North Carolina A&T State University farm in Greensboro, NC. The wetland cells (11×40 m) were constructed in 1995. Each cell consisted of an 11- $\times 10$ -m marsh at both the influent and effluent ends and a 11- $\times 20$ -m pond section separating the marshes (Fig. 1). The marsh sections were planted with broadleaf cattail (*Typha latifolia* L.) and American bulrush [*Schoenoplectus americanus* (Pers.) Volkart ex Schinz & R. Keller] in March 1996.

Experimental Design

Two on-site sources of wastewater were used to provide each wetland cell with a different N load while ensuring each cell received the same hydraulic load. The first source was the primary lagoon of a two-stage anaerobic lagoon that received manure flushed from the swine house (Fig. 1). The second source was a storage pond that had been receiving the outflow from the constructed wetlands since their initial operation in 1997 (Reddy et al., 2001). Wastewater from the primary lagoon was transferred by a submersible pump to an 8000-L storage tank and discharged into the wetland cells by gravity. A shallow-well pump was used to transfer wastewater from the storage pond to the wetland cells. Wastewater flows to each wetland cell were controlled by ball valves. Effluent from each wetland cell was discharged back to the storage pond. Flows to and from each wetland cell were measured with tipping buckets wired to an electronic cycle counter.

From September 2000 to September 2001, wastewater from each source was applied at different ratios to each wetland cell to produce six different N loads. The initial N concentrations of the two sources were used to determine the ratios necessary to target N loads between 5 and 50 kg N ha⁻¹ d⁻¹. Because N concentrations of the sources changed throughout the study period, influent ratios were adjusted accordingly on a weekly basis to reduce the variability in N load that each wetland

Fig. 1. Schematic of the marsh-pond-marsh constructed wetland design showing the sources and flow paths for swine wastewater.

received. All cells received the same hydraulic loading rate, but the daily hydraulic load varied from 7.1 to 12.6 m³ d⁻¹ throughout the study period because of variations in the nutrient concentration of the primary lagoon. The operating depths of the marsh and pond sections were 15 and 75 cm, respectively.

Wastewater samples were collected from the two inlet sources (primary lagoon and the storage pond) and from all six of the wetland cell outlets using autosamplers (Model 3700; Isco, Lincoln, NE). The samplers combined daily samples into weekly composites. Concentrated hydrochloric acid was added to each sampling bottle to lower the pH below 2.5. At the end of a weekly sampling period, samples were transferred to the laboratory for analysis and stored at 4°C.

During a field campaign in July and one in August 2001, a special open-ended enclosure was used to measure NH_3 volatilization from each section of a wetland cell at a plot located near the middle of the section. This constituted 18 tests during each field campaign. The enclosure method was used because it was the best method for such experimental areas. The enclosure was similar to that described by Poach et al. (2002) except an extension was attached to the inflow end of the enclosure to allow it to span the width of the wetland cells (Fig. 2). At the beginning of a test, the enclosure was set over a plot with the sides rolled up. The enclosure was set so that the bottom was just below the water surface in pond sections and just below the sediment surface in marsh sections. Two gas-washing bottles were mounted at the inlet

Fig. 2. Diagram of enclosure used to measure NH₃ volatilization showing dimensions and component placement.

and two at the outlet of the enclosure, and they were attached to vacuum pumps. The plastic sides were then lowered to the bottom of the enclosure and locked into place. Two variablespeed fans mounted at each end of the enclosure were turned on and their speeds were adjusted to equilibrate pressure inside the enclosure as indicated by the plastic sides remaining slack. Vacuum pumps were then turned on to begin NH₃ sampling through the gas-washing bottles. The gas-washing bottles contained an 80-mL solution of acid ($0.2 M H_2SO_4$) to extract NH₃ from the sampled air. The duration of each test was two hours. During each test, environmental conditions were measured and recorded (Table 1). The air speed generated by the fans was measured with two anemometers, one located at a 2-m height at the center of the enclosure and one located after the outlet fan (Fig. 2). The data from the outflow anemometer were used to determine airflow during field tests as described by Poach et al. (2002). Wastewater temperatures were measured using a thermocouple attached to the enclosure. Due to improper placement of the thermocouple, wastewater temperature was not measured during a few of the tests. Wind speed and temperature were recorded continually with a data-

Table 1. Wastewater parameters and plot air speed for NH₃ volatilization tests conducted in July and August 2001 on six marsh-pondmarsh constructed wetland systems in Greensboro, NC that received swine wastewater.

			July 2001			August 2001				
Wetland cell	Wetland section		Plot wastewater				Plot wastewater			
		Airspeed [†]	Temperature	pН	NH _{3,4} –N‡	Airspeed [†]	Temperature	pН	NH _{3,4} N‡	
		m s ⁻¹	°C		mg L^{-1}	m s ⁻¹	°C		mg L ⁻¹	
1	Marsh 1	1.1	ND§	7.7	162	0.6	24.5	7.0	131	
	Pond	0.9	ND	7.9	59	1.0	26.9	7.4	62	
	Marsh 2	1.3	24.7	7.4	60	0.9	20.2	7.1	50	
2	Marsh 1	1.0	24.7	7.5	122	0.9	22.3	7.0	93	
	Pond	1.1	ND	7.2	33	0.7	ND	8.0	56	
	Marsh 2	0.6	25.2	7.5	47	0.3	20.6	7.0	45	
3	Marsh 1	0.2	ND	7.4	153	0.8	22.8	6.7	88	
	Pond	1.1	ND	7.5	57	1.4	27.6	7.9	74	
	Marsh 2	1.1	21.2	7.3	53	1.0	22.7	6.6	71	
4	Marsh 1	1.2	23.3	6.6	42	1.3	24.7	7.1	58	
	Pond	1.1	ND	7.0	23	1.5	24.2	7.1	21	
	Marsh 2	0.2	21.1	6.2	21	0.5	23.5	7.3	21	
5	Marsh 1	1.0	22.5	7.7	46	0.6	23.4	6.5	97	
	Pond	1.4	24.0	7.7	29	1.1	26.3	7.1	36	
	Marsh 2	0.8	23.4	6.9	43	0.5	23.4	6.8	38	
6	Marsh 1	0.7	23.5	7.2	4	0.8	26.5	6.6	10	
	Pond	1.3	22.5	6.9	5	1.3	26.4	6.9	4	
	Marsh 2	1.5	22.0	6.6	6	0.8	23.5	6.6	4	

† Airspeed measured by an anemometer located at the center of the enclosure, 2 m above the plot surface.

‡ Ammoniacal nitrogen (NH₃-N + NH₄-N) concentration.

§ Not determined.

logger (Model CR23; Campbell Scientific, Logan, UT). Wastewater samples and pH readings were collected from an area contiguous to the study location during each test (Table 1).

Data Analyses

Gas-wash-bottle samples were treated as if they were digested samples and were analyzed for ammoniacal N using USEPA Method 351.2 (Kopp and McKee, 1983). Also using USEPA methods, wastewater samples were analyzed for ammoniacal N (351.2), nitrate and nitrite N (353.1), and total Kjeldahl N (351.2). Samples were analyzed with a TrAAcs 800 Auto-Analyzer (Bran + Luebbe, Buffalo Grove, IL). Total N was the sum of total Kjeldahl N and nitrate and nitrite N.

Hourly rates of NH₃ volatilization in mg NH₃–N m⁻² h⁻¹ were determined from the difference in NH₃–N collected by the inlet and outlet gas-washing bottles over a 2-h period after adjusting for the air sampling ratio (Eq. [2] in Poach et al., 2002). The contribution of NH₃ volatilization to the N budget of each wetland cell was estimated by averaging NH₃ volatilization across each cell, extrapolating these averages to daily rates, and comparing the result with the nitrogen loading and removal rates for that cell. Total N removal was determined by the difference in the monthly average mass N load between the inlet and outlet of each wetland cell. The extrapolation of daytime hourly rates to daily rates may have overestimated NH₃ volatilization because volatilization tends to exhibit a diurnal pattern where NH₃ volatilization is lower during the night (Bussink et al., 1996).

Statistical Analysis

For each NH_3 volatilization test, significant difference between mean NH_3 –N captured by inlet and outlet bottles was determined using a Student's *t* test. Individual *t* tests were made more powerful by pooling standard deviations for all tests within a section (marsh vs. pond) to estimate the sampling variance. A difference that was not significant indicated that NH_3 volatilization was below the detection limit of the enclosure.

The influence of environmental factors and wastewater characteristics on NH_3 volatilization was investigated with the regression procedure of the SAS system (SAS Institute, 1990). To determine if wetland section affected NH_3 volatilization, NH_3 volatilization was plotted versus N load for each wetland section (marsh or pond) and the slopes of the resulting regression lines were compared with the GLM procedure of the SAS system (SAS Institute, 1990). This analysis was repeated for the regressions of NH_3 volatilization versus the ammoniacal N of the plot wastewater.

RESULTS AND DISCUSSION

Ammonia volatilized from marsh and pond sections of the wetlands during July and August as indicated by significant differences in NH₃–N collected at the enclosure outlet and inlet (Tables 2 and 3). Ten tests in July and seven tests in August had differences that were significant at a 90% confidence level. Differences ranged from -16 to $163 \mu g$ NH₃–N in July and from -2 to $132 \mu g$ NH₃–N in August. Positive differences indicate NH₃ volatilization while negative differences indicate NH₃ deposition. Ammonia deposition probably occurred because the NH₃ in the air entering the enclosure was higher than the NH₃ compensation point of the plot (Farquhar et al., 1980).

Rates of NH₃ volatilization associated with the differences that were statistically significant ranged from 5 to 102 mg NH₃–N m⁻² h⁻¹ (Tables 2 and 3). Only one test had a significant negative value, -14 mg NH₃–N m⁻² h⁻¹. During this test, the inlet of the enclosure was drawing air from an area close to the pond section of the wetland system exhibiting the highest NH₃ volatiliza-

Table 2. Ammonia volatilization from six marsh-pond-marsh constructed wetland systems in Greensboro, NC that received swine wastewater at six different N loads during July 2001 as determined by the difference in NH₃-N captured at the inlet and outlet of a steady-state enclosure.

	Wetland section	N load	Air flow†		NH ₃ -N		NH ₃ volatilization‡		
Wetland cell				In	Out	Out – in	Per cell	Cell mean§	
		kg ha $^{-1}$ d $^{-1}$	$L \min^{-1}$		μg		— mg NH	3-N m ⁻² h ⁻¹	
1	Marsh 1 Pond Marsh 2 Marsh 1	30.4 27.9	51 327 22 242 40 265 27 316	31 43 22 9	45 206 34 23	14¶ 163# 12¶ 14¶	15 76 10 8	44	
3	Pond Marsh 2 Marsh 1	28.3	25 005 42 714 32 371	71 46 21	220 30 16	149# -16¶ -5	78 -14†† -3	41	
4	Pond Marsh 2 Marsh 1	12.3	31 835 48 496 50 019	51 3 6	185 7 19	135# 5 13¶	89 5 13	46	
5	Pond Marsh 2 Marsh 1	15.5	31 456 40 611 33 225	13 9 11	18 8 25	6 -2 14¶	4 -1 10	5	
6	Pond Marsh 2 Marsh 1	2.5	38 848 47 290 31 894	3 5 7	49 12 10	46# 7 3	37 7 2	23	
	Pond Marsh 2		29 429 38 655	7 7	16 11	9 5	5 4	4	

† Determined from airspeed measured at outflow of enclosure.

 \ddagger Volatilization = [(NH₃-N out - NH₃-N in) × (enclosure airflow/6 L min⁻¹)/4 m²/2 h] × (1 mg/1000 µg).

\$ Negative values below detection limit of enclosure were considered to be zero in the determination of cell mean.

I Statistically different from zero (LSD_{0.1} = 7 μ g) indicating that volatilization was above detection limit.

Statistically different from zero (LSD_{0.1} = 21 μ g) indicating that volatilization was above detection limit.

†† Not included in cell mean.

T	Table 3.	Ammonia	volatilization	from six	marsh-por	nd–marsh	constructed	wetland s	systems in	Greensboro,	NC that	received	swine
	waste	water at siz	x different niti	ogen load	ls during A	ugust 2001	l as determi	ned by the	difference	e in ammonia	nitrogen	captured	at the
	inlet a	nd outlet	of a steady-sta	te enclosi	ire.			•				-	

	Wetland section				NH ₃ -N		NH ₃ volatilization‡	
Wetland cell		N load	d Air flow†	In	Out	Out – in	Per cell	Cell mean§
		kg ha ⁻¹ d ⁻¹	L min ⁻¹		μg –		— mg NH	₃ -N m ⁻² h ⁻¹
1	Marsh 1	27.4	31 652	12	23	11¶	7	
	Pond		22 934	40	158	118 [#]	56	
	Marsh 2		36 321	9	19	10¶	8	32
2	Marsh 1	26.7	35 403	7	10	3	3	
	Pond		21 001	70	202	132#	58	
	Marsh 2		31 778	19	18	-1	-1	29
3	Marsh 1	37.1	39 189	7	10	3	2	
	Pond		41 779	10	127	117#	102	
	Marsh 2		50 299	28	31	3	3	52
4	Marsh 1	12.7	29 985	5	13	8¶	5	
	Pond		31 518	19	18	-2	-1	
	Marsh 2		38 682	8	10	2	2	2
5	Marsh 1	14.7	30 625	5	22	16¶	11	
	Pond		29 432	6	15	9	6	
	Marsh 2		29 889	12	14	2	1	6
6	Marsh 1	4.1	30 208	5	7	2	1	
	Pond		33 391	7	5	-2	-2	
	Marsh 2		37 645	8	9	1	1	1

† Determined from airspeed measured at outflow of enclosure.

 $\therefore \text{ Volatilization} = [(\text{NH}_3-\text{N out} - \text{NH}_3-\text{N in}) \times (\text{enclosure airflow/6 L min}^{-1})/4 \text{ m}^2/2 \text{ h}] \times (1 \text{ mg/1000 } \mu\text{g}).$

Negative values below detection limit of enclosure were considered to be zero in the determination of cell mean.

¶ Statistically different from zero (LSD_{0.1} = 7 μ g) indicating that volatilization was above detection limit.

Statistically different from zero $(LSD_{0.1} = 21 \mu g)$ indicating that volatilization was above detection limit.

tion. As a result, this test had the highest background concentration of NH₃–N for tests conducted on marsh sections. Because the measurement procedure may have imposed an unrealistic background NH₃ concentration, this value was not used in subsequent analyses.

Results supported the hypothesis that the pond section could produce rates of NH₃ volatilization greater than marsh sections. As N load increased, pond sections exhibited a significantly greater increase in the rate of NH₃ volatilization (p < 0.001) than did the marsh sections (Fig. 3). Pond sections that received N loads greater than 15 kg ha⁻¹ d⁻¹ produced rates of NH₃ volatilization greater than 36 mg NH₃–N m⁻² h⁻¹, while all marsh sections produced rates less than 16 mg NH₃–N m⁻² h⁻¹ (Tables 2 and 3). Different trends were also displayed by regressions of NH₃ volatilization versus the ammoniacal N concentration of plot wastewater. As the ammoniacal N concentration increased, pond sections exhibited a significantly greater increase in the rate of NH₃ volatilization (p < 0.0001) than did the marsh sections (Fig. 4).

When data within a section (marsh or pond) were

Fig. 3. Regression by wetland section (marsh or pond) of NH₃ volatilization versus monthly average N load.

Fig. 4. Regression by wetland section (marsh or pond) of NH₃ volatilization versus ammoniacal N concentration of wastewater in the plot. \dagger If a data point is excluded from regression analysis, the regression equation is y = 0.06x + 1.92 ($R^2 = 0.31$).

analyzed by regression, ammoniacal N concentration was a significant regressor (p < 0.001) that explained 71% of NH₃ volatilization from pond sections (Fig. 4). Ammoniacal N concentration and air speed measured over the plot were significant regressors (p < 0.002) that explained 49% of NH₃ volatilization from marsh sections. This relationship improved ($R^2 = 0.54$, p < 0.001) when the volatilization value of -3 mg NH₃–N m⁻² h⁻¹ was excluded from the analysis, an indication that this point may be an outlier. Regression also indicated that NH₃ volatilization was affected by the month in which the tests occurred, with NH₃ volatilization tending lower in August, but this was probably the result of lower ammoniacal N concentrations during August (Table 1).

When the full data set was analyzed by regression, wetland section (marsh versus pond) and the pH of plot wastewater were significant regressors (p < 0.0001) that explained 54% of the variation in NH₃ volatilization. Ammonia volatilization tended to increase as pH increased. This was expected because the percent of wastewater ammoniacal N present as the volatile form would have increased with an increase in pH (Kadlec and Knight, 1996). This partly explains why the pond sections exhibited higher NH₃ volatilization than marsh sections. The pond sections that received N loads greater than 15 kg ha⁻¹ d⁻¹ tended to have higher wastewater pH than their adjacent marshes (Table 1). The higher pH probably resulted from the presence of algae in these pond sections. As algae photosynthesize during the day, the consumption of carbon dioxide can raise the pH of their surroundings (Reddy, 1981). The pond sections of wetlands with lower N loads appeared to be dominated by duckweed (*Lemna minor* L.).

Research on NH₃ volatilization from manure storage lagoons indicated that NH₃ volatilization was affected by wind blowing across the lagoon along with wastewater pH, ammonia concentration, and temperature (Harper et al., 2000). This would indicate that the different NH_3 volatilization trends could have resulted from the pond sections having a larger wind-exposed surface area compared with marsh sections, but such a relationship was not supported by regression analysis. The lack of evidence for such a relationship was due mainly to the fact that pond sections exhibited rates of NH₃ volatilization similar to marsh sections at N loads below 15 kg ha⁻¹ d⁻¹ (Tables 2 and 3). It is possible that the duckweed covering the surface of those pond sections reduced the effect of wind on NH₃ volatilization. No reliable conclusions could be drawn about the effect of wastewater temperature because of the missing data points. Therefore, more research needs to be conducted to fully explain the different NH₃ volatilization trends displayed by pond and marsh sections.

During the study period, NH₃ volatilization was important to the N budget of these wetlands when N loads were greater than 15 kg ha⁻¹ d⁻¹. At these loads, NH₃ volatilization removed 23 to 36% of the N loaded to the wetlands, and its contribution tended to increase as N load increased (Table 4). This NH₃ volatilization also accounted for 54 to 79% of the total N removed by these wetlands. These results indicate that NH₃ volatilization was the dominant N removal mechanism at N loads greater than 15 kg ha⁻¹ d⁻¹. It should be noted

		Mean NH ₃ volatilization						
N load in†	N removed [†]	Marsh and pond [†]	Marsh only‡	Marsh	Marsh and pond			
		kg NH3-N I	% load	% removed				
32.7	14.8	11.8	0.6	36	79			
28.9	16.0	9.1	2.4	31	57			
27.3	14.3	8.4	0.6	31	59			
15.1	6.4	3.4	1.7	23	54			
12.5	7.3	0.8	1.2	7	11			
3.3	1.1	0.6	0.5	17	51			

Table 4. Contribution of mean NH₃ volatilization to the nitrogen budget of six marsh-pond-marsh constructed wetlands in Greensboro, NC that received swine wastewater.

[†] Values are means for both sampling periods and are listed in order of decreasing N load.

* Ammonia volatilization expected if each wetland was continuous marsh instead of marsh-pond-marsh.

that these results only apply to the daytime hours during the summer. Ammonia volatilization can be expected to be lower at night and lower during the winter due to higher atmospheric stability and lower wastewater temperatures (Harper et al., 2000; Bussink et al., 1996). A drop in pH as a result of the cessation of photosynthesis in the pond sections would also lead to a reduction in NH₃ volatilization during the nighttime.

Even though the results only apply to the sampling period, they still indicate that NH_3 volatilization is a concern for animal wastewater treatment by marsh-pond-marsh systems, especially since, at N loads greater than 15 kg ha⁻¹ d⁻¹, NH₃ volatilization was greater from these systems than that expected to occur if the wetlands were of the continuous marsh type. At these loads, the mean NH₃ volatilization values from the marsh-pond-marsh systems were 3.4 to 11.8 kg NH₃–N ha⁻¹ d⁻¹, but if the wetlands were of the continuous marsh type then the mean NH₃ volatilization would have been 0.6 to 2.4 kg NH₃–N ha⁻¹ d⁻¹ (Table 4). The latter rates, which are similar to those reported by Poach et al. (2002), would represent a minor component (less than 12%) of the total N budget of these wetlands.

Results indicate that NH₃ volatilization by marshpond-marsh systems can be reduced by reducing the ammoniacal N concentration of the wastewater (Fig. 4). One means of reducing the ammoniacal N concentration of the wastewater is by diluting the wastewater with water, but that would incur the disadvantage of increasing the total volume of wastewater that needed treatment. The ammoniacal N concentration of wastewater can also be reduced by converting ammoniacal N to nitrate and nitrite N by the process of nitrification. Nitrification of swine wastewater before wetland application was shown to reduce NH₃ volatilization by continuous marsh systems (Poach et al., 2002). However, if the addition of pre-wetland nitrification is needed to improve swine wastewater treatment by marsh-pondmarsh systems, then the pond section becomes unnecessary because the pond section was added to the treatment wetland design specifically to enhance wastewater nitrification (Hammer, 1994; Reaves, 1996). Therefore, at N loads greater than 15 kg ha⁻¹ d⁻¹, continuous marsh systems should be preferred over marsh-pond-marsh systems for the treatment of wastewater from confined animal operations.

CONCLUSIONS

Enclosure measurements indicated that NH_3 volatilized from marsh and pond sections of the wetlands during July and August of 2001. As N load increased, NH_3 volatilization increased at a significantly greater rate over pond sections compared with marsh sections. Pond sections that received N loads greater than 15 kg ha⁻¹ d⁻¹ produced rates of NH_3 volatilization greater than $36 \text{ mg }NH_3$ –N m⁻² h⁻¹, while all marsh sections produced rates less than 16 mg NH_3 –N m⁻² h⁻¹. The difference in NH_3 volatilization between pond and marsh sections was partially explained by wastewater pH. However, more research needs to be conducted to fully explain the different NH_3 volatilization trends displayed by pond and marsh sections.

During the study period, NH₃ volatilization was an important contributor to the N balance of marsh–pond– marsh systems when N loads were greater than 15 kg ha⁻¹ d⁻¹. At these loads, NH₃ volatilization removed 23 to 36% of the N loaded to the wetlands, and it accounted for 54 to 79% of the total N removed by these wetlands. Marsh sections were minor contributors to the overall NH₃ volatilization of these wetlands, so the pond section exacerbated rather than ameliorated the NH₃ volatilization at N loads greater than 15 kg ha⁻¹ d⁻¹. At these loads, continuous marsh systems should be preferred over marsh–pond–marsh systems for the treatment of wastewater from confined animal operations.

REFERENCES

- Asman, W.A.H. 1994. Emission and deposition of ammonia and ammonium. Nova Acta Leopold. 228:263–297.
- Brix, H. 1993. Wastewater treatment in constructed wetlands: System design, removal processes, and treatment performance. p. 9–22. In G.A. Moshiri (ed.) Constructed wetlands for water quality improvement. CRC Press, Boca Raton, FL.
- Bussink, D.W., L.A. Harper, and W.J. Corre. 1996. Ammonia transport in a temperate grassland: II. Diurnal fluctuations in response to weather and management conditions. Agron. J. 88:621–626.
- Farquhar, G.D., P.M. Firth, R. Wetselaar, and B. Weir. 1980. On the gaseous exchange of ammonia between leaves and the environment: Determination of the ammonia compensation point. Plant Physiol. 66:710–714.
- Hammer, D.A. 1994. Guidelines for design, construction, and operation of constructed wetlands for livestock wastewater treatment.
 p. 155–181. *In* P.J. DuBowy and R.P. Reaves (ed.) Constructed wetlands for animal waste management. Purdue Res. Foundation, West Lafayette, IN.
- Harper, L.A., R.R. Sharpe, and T.B. Parkin. 2000. Gaseous nitrogen

emissions from anaerobic swine lagoons: Ammonia, nitrous oxide, and dinitrogen gas. J. Environ. Qual. 29:1356–1365.

- Johnston, C.A. 1991. Sediment and nutrient retention by freshwater wetlands: Effects on surface water quality. Crit. Rev. Environ. Control 21:491–565.
- Kadlec, R.H., and R.L. Knight. 1996. Treatment wetlands. Lewis Publ., Boca Raton, FL.
- Kopp, J.F., and G.D. McKee. 1983. Methods for chemical analysis of water and wastes. Rep. EPA-600/4-79020. Environ. Monitoring and Support Lab., Office of Res. and Development, USEPA, Cincinnati, OH.
- Moore, J.A., and S.F. Niswander. 1997. Oregon State University dairy wetland. p. II30–II33. *In* Payne Engineering and CH2M Hill (ed.) Constructed wetlands for animal waste treatment. USEPA Spec. Publ., Gulf of Mexico Program, Nutrient Enrichment Committee. USEPA, Washington, DC.
- Payne, V.W.E., and R.L. Knight. 1997. Constructed wetlands for treating animal wastes. Section I: Performance, design, and operation. p. 1–48. *In* Payne Engineering and CH2M Hill (ed.) Constructed wetlands for animal waste treatment. USEPA Spec. Publ., Gulf

of Mexico Program, Nutrient Enrichment Committee. USEPA, Washington, DC.

- Poach, M.E., P.G. Hunt, E.J. Sadler, T.A. Matheny, M.H. Johnson, K.C. Stone, F.J. Huminek, and J.M. Rice. 2002. Ammonia volatilization from constructed wetlands that treat swine wastewater. Trans. ASAE 45:619–627.
- Poach, M.E., P.G. Hunt, M.B. Vanotti, K.C. Stone, T.A. Matheny, M.H. Johnson, and E.J. Sadler. 2003. Improved nitrogen treatment by constructed wetlands receiving partially nitrified liquid swine manure. Ecol. Eng. 20:183–197.
- Reaves, R.P. 1996. Constructed wetlands for swine waste treatment. p. 118–128. *In* A.L. Kenimer, A.D. Morton, and K. Wendler (ed.) Proc. 2nd Natl. Workshop on Constructed Wetlands for Animal Waste Manage., Fort Worth, TX. 15–18 May 1996. Texas A&M Univ. System, College Station.
- Reddy, G.B., P.G. Hunt, R. Phillips, K. Stone, and A. Grubbs. 2001. Treatment of swine wastewater in marsh-pond-marsh constructed wetlands. Water Sci. Technol. 44(11–12):545–550.
- Reddy, K.R. 1981. Diel variations in physico-chemical parameters of water in selected aquatic systems. Hydrobiologia 85:201–207.
- SAS Institute. 1990. SAS Version 6.07. SAS Inst., Cary, NC.