Page Banner

United States Department of Agriculture

Agricultural Research Service

Research Project: Management Practices to Mitigate Global Climate Change, Enhance Bio-Energy Production, Increase Soil-C Stocks & Sustain Soil Productivity...

Location: Soil Plant Nutrient Research (SPNR)

Title: Influence of ATP-binding cassette transporters in root exudation of phytoalexins, signals, and disease resistance

Authors
item Badri, Dayakar -
item Chaparro, Jacqueline -
item Manter, Daniel
item Martinoia, Enrico -
item Vivanco, Jorge -

Submitted to: Frontiers in Plant Science
Publication Type: Peer Reviewed Journal
Publication Acceptance Date: June 16, 2012
Publication Date: July 5, 2012
Citation: Badri, D.V., Chaparro, J.M., Manter, D.K., Martinoia, E., Vivanco, J. 2012. Influence of ATP-binding cassette transporters in root exudation of phytoalexins, signals, and disease resistance. Frontiers in Plant Science. 3(149):1-17.

Interpretive Summary: The roots of plants secrete compounds as a way to exchange information with organ-isms living in the soil. Here, we report the involvement of seven root-expressed ATP-binding cassette (ABC) transporters corresponding to both full and half-size molecules (Atabcg36, Atabcg37, Atabcc5, Atabcf1, Atabcf3, Atnap5, and Atath10) in root exudation processes using Arabidopsis thaliana. Root exuded phytochemicals were analyzed by high-performance liquid chromatography-mass spectrometry (HPLC-MS) and gas chromatography-mass spectrometry (GC-MS), and it was determined that some of the root exudates from the corresponding ABC transporter mutants were significantly differ-ent compared to the wild type. For example, Atabcg37 and Atabcc5 secreted higher levels of the phytoalexin camalexin, and Atabcg36 secreted higher levels of organic acids, specifically salicylic acid (SA). Furthermore, we analyzed the root tissue metabolites of these seven ABC transporter mutants and found that the levels of SA, quercetin, and kaempferol glucosides were higher in Atabcg36, which was correlated with higher expression levels of defense genes in the root tissues compared with the wild type. We did not observe significant changes in the root exudates of the half-size transporters except for Atabcf1 that showed lower levels of few organic acids. In summary, full-size transporters are involved in root secretion of phytochemicals.

Technical Abstract: The roots of plants secrete compounds as a way to exchange information with organ-isms living in the soil. Here, we report the involvement of seven root-expressed ATP-binding cassette (ABC) transporters corresponding to both full and half-size molecules (Atabcg36, Atabcg37, Atabcc5, Atabcf1, Atabcf3, Atnap5, and Atath10) in root exudation processes using Arabidopsis thaliana. Root exuded phytochemicals were analyzed by high-performance liquid chromatography-mass spectrometry (HPLC-MS) and gas chromatography-mass spectrometry (GC-MS), and it was determined that some of the root exudates from the corresponding ABC transporter mutants were significantly differ-ent compared to the wild type. For example, Atabcg37 and Atabcc5 secreted higher levels of the phytoalexin camalexin, and Atabcg36 secreted higher levels of organic acids, specifically salicylic acid (SA). Furthermore, we analyzed the root tissue metabolites of these seven ABC transporter mutants and found that the levels of SA, quercetin, and kaempferol glucosides were higher in Atabcg36, which was correlated with higher expression levels of defense genes in the root tissues compared with the wild type. We did not observe significant changes in the root exudates of the half-size transporters except for Atabcf1 that showed lower levels of few organic acids. In summary, full-size transporters are involved in root secretion of phytochemicals.

Last Modified: 8/22/2014
Footer Content Back to Top of Page