Skip to main content
ARS Home » Pacific West Area » Albany, California » Western Regional Research Center » Healthy Processed Foods Research » Research » Publications at this Location » Publication #277841

Title: Maillard reaction products of rice protein hydrolysates with mono-, oligo- and polysaccharides

Author
item LI, YUE - Jiangnan University
item ZHONG, FANG - Jiangnan University
item JI, WEI - Jiangnan University
item Yokoyama, Wallace - Wally
item SHOEMAKER, CHARLES - University Of California
item ZHU, SONG - Jiangnan University
item XIA, WENSHUI - Jiangnan University

Submitted to: Food Hydrocolloids
Publication Type: Peer Reviewed Journal
Publication Acceptance Date: 4/26/2012
Publication Date: 5/15/2012
Citation: Li, Y., Zhong, F., Ji, W., Yokoyama, W.H., Shoemaker, C.F., Zhu, S., Xia, W. 2012. Maillard reaction products of rice protein hydrolysates with mono-, oligo- and polysaccharides. Food Hydrocolloids Journal. 30(1):53-60. DOI: 10.1016/j.foodhyd.2012.04.013.

Interpretive Summary: The functionality of rice protein was improved by hydrolysis followed by combining and reacting the hydrolysates with small carbohydrates. The reaction products are called Maillard products and had improved solubility and emulsification properties. The properties of the protein hydrolysate peptide size and carbohydrate size were found to be important properties.

Technical Abstract: Rice protein, a byproduct of rice syrup production, is abundant but, its lack of functionality prevents its wide use as a food ingredient. Maillard reaction products of (MRPs) hydrolysates from the limited hydrolysis of rice protein (LHRP) and various mono-, oligo- and polysaccharides were evaluated for their functional properties. LHRPs (degree of hydrolysis (DH) 4-7%) by 3 proteases were reacted with glucose, lactose, maltodextrin DE20, or dextran T20. Hydrolysates of Protease N at 5% DH with dextran T20 (20 mins at 100 oC) produced MRPs with the greatest improvement in solubility (NS), emulsification activity (EA), and emulsification stability (ES). The NS, EA and ES of the MRP increased by factors of 3.5, 5.3 and 7.3 times, respectively as compared to MRP formed with native rice proteins. Amino acid analysis indicated that lysine and arginine decreased significantly in the MRPs. HPLC and fluorescence analysis suggested that formation of late stage MRPs occurred after 20 minutes. The functional properties of MRPs and the mechanisms of formation were affected by the peptide chain length.