Skip to main content
ARS Home » Pacific West Area » Albany, California » Western Regional Research Center » Crop Improvement and Genetics Research » Research » Publications at this Location » Publication #257810

Title: Draft genome sequence of the oilseed species Ricinus communis

Author
item CHAN, AGNES - J Craig Venter Institute
item CRABTREE, JONATHAN - University Of Maryland
item ZHAO, QI - J Craig Venter Institute
item LORENZI, HERNAN - J Craig Venter Institute
item ORVIS, JOSHUA - University Of Maryland
item PUIU, DANIELA - University Of Maryland
item MELAKE-BERHAN, ADMASU - J Craig Venter Institute
item JONES, KRISTINE - University Of Maryland
item REDMAN, JULIA - University Of Maryland
item Chen, Grace
item CAHOON, EDGAR - University Of Nebraska
item GEDIL, MELAKU - University Of Ibadan
item STANKE, MARIO - Gottingen University
item WORTMAN, JENNIFER - University Of Maryland
item FRASER-LIGGETT, CLAIRE - University Of Maryland
item RAVEL, JACQUES - University Of Maryland
item RABINOWICZ, PABLO - J Craig Venter Institute

Submitted to: Nature Biotechnology
Publication Type: Peer Reviewed Journal
Publication Acceptance Date: 8/30/2010
Publication Date: 9/10/2010
Citation: Chan, A.P., Crabtree, J., Zhao, Q., Lorenzi, H., Orvis, J., Puiu, D., Melake-Berhan, A., Jones, K.M., Redman, J., Chen, G.Q., Cahoon, E.B., Gedil, M., Stanke, M., Wortman, J.R., Fraser-Liggett, C.M., Ravel, J., Rabinowicz, P.D. 2010. Draft genome sequence of the oilseed species Ricinus communis. Nature Biotechnology. 28(9):951-956.

Interpretive Summary: Castor beans contain oil which have numerous industrial applications. However, one of the issues in castor cultivation and oil process is the high ricin content in seeds. The genome sequence data of castor provide information about oil synthesis genes and ricin genes, which are critical for understanding biosynthesis of castor oil and developing tools for ricin detection and elimination. In addition to practical application to castor improvement, this draft genome sequence provides integral data for characterization of evolutionary processes in flowering plants.

Technical Abstract: Castor bean (Ricinus communis) is an oil crop that belongs to the spurge (Euphorbiaceae) family. Its seeds are the source of castor oil, used for the production of high-quality lubricants due to its high proportion of the unusual fatty acid ricinoleic acid. Castor bean seeds also produce ricin, a highly toxic ribosome inactivating protein, making castor bean relevant for biosafety. We report here the 4.6X draft genome sequence of castor bean, representing the first reported Euphorbiaceae genome sequence. Our analysis shows that most key castor oil metabolism genes are single-copy while the ricin gene family is larger than previously thought. Comparative genomics analysis reveals an ancient hexaploidization event that is conserved across the dicotyledonous lineage.