Skip to main content
ARS Home » Southeast Area » Stuttgart, Arkansas » Harry K. Dupree Stuttgart National Aquaculture Research Cntr » Research » Publications at this Location » Publication #238334

Title: Energy and resource consumption of land-based Atlantic salmon smolt hatcheries in the Pacific Northwest (USA)

Author
item COLT, JOHN - National Oceanic & Atmospheric Administration (NOAA)
item SUMMERFELT, STEVE - Freshwater Institute
item Pfeiffer, Tim
item FIVELSTAD, SVEINUNG - Bergen College
item RUST, MICHAEL - National Oceanic & Atmospheric Administration (NOAA)

Submitted to: Book of Abstracts Aquaculture America
Publication Type: Abstract Only
Publication Acceptance Date: 10/30/2008
Publication Date: 3/15/2009
Citation: Colt, J., Summerfelt, S.T., Pfeiffer, T.J., Fivelstad, S., Rust, M. 2009. Energy and resource consumption of land-based Atlantic salmon smolt hatcheries in the Pacific Northwest (USA) [abstract]. Book of Abstracts Aquaculture America. p.68.

Interpretive Summary:

Technical Abstract: Conventional economic analysis does not typically include societal costs associated with ecological or environmental impacts and may significantly underestimate production costs and ecosystems impacts. Different production systems will have different labor, energy, and physical components. To compare these systems from a sustainability perspective, it is necessary to be able to evaluate the componets of each system in terms of some type of “common currency”. Two potential analytical tools for sustainability analysis include (a) energy analysis and (b) greenhouse gas emissions. Energy analysis is a form of energy accounting that considers bth direct and indirect energy inputs to a given process. Greenhouse gas emissions are of current interest because of their impact on global warming and ocean acidification. The energy and resource requirements of six different types of land-based, hatchery production systems located in the U.S. Pacific Northwest were evaluated: flow-through with a gravity water supply, flow-through with a pumped water supply, flow-through with pure oxygen, partial reuse with heating, and a reuse system for the production of Atlantic smolts. Key parameters used in the evaluation include direct energy, indirect energy, transportation energy, greenhouse gas emissions, and pollutant discharges. The rearing options with the highest energy efficiencies were flow-through with gravity supply (3.49%), partial reuse (2.75%), and reuse (2.64%). On a kg basis of smolt produced the reuse system had the lowest water (2 m3 kg1) and land requirements (0.13 m2 kg1) and the third lowest total energy requirements (288 MJ kg1). The flow-through system with gravity water supply had the lowest energy requirements (218 MJ kg1), a moderate land requirement (0.78 m2 kg1), and a high water requirement (214 m3 kg1).