Skip to main content
ARS Home » Pacific West Area » Albany, California » Plant Gene Expression Center » Research » Publications at this Location » Publication #108015

Title: GENOME-WIDE MAPPING WITH BIALLELIC MARKERS IN ARABIDOPSIS THALIANA

Author
item Theologis, Athanasios
item CHO, R. - STANFORD
item MINDRINOS, M. - GENENCOR, PALO ALTO, CA
item RICHARDS, D. - STANFORD
item SAPOLSKY, R. - STANFORD
item ANDERSON, M. - UNIV OF NOTTINGHAM, UK
item DRENKARD, E. - MASSACHUSETTS GEN HOSPTL
item DEWDNEY, J. - MASSACHUSETTS GEN HOSPTL
item RUBER, L. - MASSACHUSETTS GEN HOSPTL
item STAMMERS, M. - JOHN INNES, NORWICH, UK

Submitted to: Nature Genetics
Publication Type: Peer Reviewed Journal
Publication Acceptance Date: 10/1/1999
Publication Date: N/A
Citation: Theologis, A., Cho, R.J., Mindrinos, M., Richards, D.R., Sapolsky, R.J., Anderson, M., Drenkard, E., Dewdney, J., Ruber, L., Stammers, M. 1999. Genome-wide mapping with biallelic markers in arabidopsis thaliana. Nature Genetics, 23(2) 203-207.

Interpretive Summary: We report the construction of a biallelic genetic map in A. thaliana. The results are the first demonstration of biallelic mapping in diploid genomes and establish means for generalizing SNP-based maps to virtually any genetic organism.

Technical Abstract: Single-nucleotide polymorphisms, as well as small insertions and deletions (here referred to collectively as simple nucleotide polymorphisms, or SNPs), comprise the largest set of sequence variants in most organisms. Positional cloning based on SNPs may accelerate the identification of human disease traits and a range of biologically informative mutations. The recent application of high-density oligonucleotide arrays to allele identification has made it feasible to genotype thousands of biallelic SNPs in a single experiment. It has yet to be established, however, whether SNP detection using oligonucleotide arrays can be used to accelerate the mapping of traits in diploid genomes. The cruciferous weed Arabidopsis thaliana is an attractive model system for the construction and use of biallelic SNP maps. Although important biological processes ranging from fertilization and cell fate determination to disease resistance have been modelled in A. thaliana, identifying mutations in this organism has been impeded by the lack of a high-density genetic map consisting of easily genotyped DNA markers. We report here the construction of a biallelic genetic map in A. thaliana with a resolution of 3.5 cM and its use in mapping Eds16, a gene involved in the defence response to the fungal pathogen Erysiphe orontii. Mapping of this trait involved the high-throughput generation of meiotic maps of F2 individuals using high-density oligonucleotide probe array-based genotyping. We developed a software package called InterMap and used it to automatically delimit Eds16 to a 7-cM interval on chromosome 1. These results are the first demonstration of biallelic mapping in diploid genomes and establish means for generalizing SNP-based maps to virtually any genetic organism.