Page Banner

United States Department of Agriculture

Agricultural Research Service

Title: Spray Droplet:plant Surface Interaction and Deposit Formation As Related Tosurfactants and Spray Volume

Authors
item Bukovac, Martin - MICH ST UNIV/HORT DEPT
item Miguel, Leon - MICH STATE UNIV/HORT DEPT
item Cooper, Jane - OSU/OARDC-ENTOMOL DEPT
item Whitmoyer, Robert - OSU/OARDC-ELEC MICRO LAB
item Reichard, Donald
item Brazee, Ross

Submitted to: International Symposium on Adjuvants for Agrochemicals
Publication Type: Abstract Only
Publication Acceptance Date: May 15, 1995
Publication Date: N/A

Technical Abstract: Spray droplet:plant interaction is central to droplet retention: those adhering contribute to crop protection/bioregulation, while those reflected reduce efficiency and add to pollution. Impaction is complex, with surface morphology and solution surface tension (ST) important factors. Droplet reflection lessens, in order, from leaves of cabbage, wheat, soybean and foxtail, with none from pear, correlating highly with dynamic surface tension. Surfactants differ in ability to reduce ST and improve retention by a given plant, their net effect dependent on the plant surface and spray volume. In high-volume sprays, reduced ST often increases droplet retention, spread and coalescence, but allows runoff. Low-volume sprays are retained as discrete droplets: Surfactants increase droplet:plant interface depending on solution properties and surface microstructure/chemistry. ST has little effect on interface area for easily wetted sugar beet leaves, while efficient surfactants increase interface on hard-to-wet kohlrabi. After droplets adhere, the liquid phase evaporates, leaving an apparently dry deposit of active ingredient (AI) and nonvolatile additives. Marked concentration, pH, ionic-strength and AI-distribution changes occur between bulk and constituent additives in drying. Evaporation is rapid at the droplet:air:leaf-surface interface, droplet contents depositing heavily at such sites. Deposits vary from narrow annuli to single masses, crystalline to amorphous in form. Reduced spray volume at constant dose raises the amount of AI per unit interface. Surfactants modify deposit form, silicone surfactants spreading material over large areas.

Last Modified: 9/23/2014
Footer Content Back to Top of Page