Page Banner

United States Department of Agriculture

Agricultural Research Service

Research Project: Leveraging Remote Sensing, Land Surface Modeling and Ground-based Observations ... Variables within Heterogeneous Agricultural Landscapes

Location: Hydrology and Remote Sensing Laboratory

Title: Utility of a thermal-based two-source energy balance model for estimating surface fluxes over complex landscapes

Authors
item Kustas, William
item Anderson, Martha
item Cammalleri, Carmelo
item Alfieri, Joseph

Submitted to: Procedia Environmental Sciences
Publication Type: Proceedings
Publication Acceptance Date: May 12, 2013
Publication Date: July 26, 2013
Citation: Kustas, W.P., Anderson, M.C., Cammalleri, C.N., Alfieri, J.G. 2013. Utility of a thermal-based two-source energy balance model for estimating surface fluxes over complex landscapes. In: Proceedings of Four Decades of Progresses in Monitoring and Modeling of Processes in the Soil-Plant-Atmosphere System: Applications and Challenges Symposium, June 19-21, 2013, Naples, Italy. 19:224-230.

Technical Abstract: Many landscapes are comprised of a variety of vegetation types with different canopy structure, rooting depth, physiological characteristics, including response to environmental stressors, etc. Even in agricultural regions, different management practices, including crop rotations, irrigation scheduling, planting density, seed varieties, and other factors result in complex patterns in vegetation growth stages, canopy cover, canopy architecture and cropping densities. This variability at the canopy, field and landscape scale, makes it very challenging for quantifying spatially-distributed surface fluxes. This paper describes a robust but relatively simple thermal-based energy balance model that parameterizes the key soil/substrate and vegetation exchange processes affecting the radiative balance and turbulent energy transport with the overlying atmosphere. The thermal-based model, called the Two-Source Energy Balance (TSEB) model solves for the soil/substrate and canopy temperatures that achieves a balance in the radiation and turbulent heat flux exchange with the lower atmosphere for the soil/substrate and vegetation elements. The TSEB scheme permits interaction between soil/substrate and canopy elements which are both coupled to the atmosphere via the canopy-air temperature; this canopy-air temperature is highly correlated to the aerodynamic surface temperature used in computing surface sensible heat flux. As a result, the TSEB modeling framework is applicable to a wide range of atmospheric and canopy cover conditions. An overview of recent applications of the TSEB modeling framework to a variety of agricultural landscapes is presented.

Last Modified: 7/30/2014
Footer Content Back to Top of Page