Page Banner

United States Department of Agriculture

Agricultural Research Service

Research Project: USING REMOTE SENSING & MODELING FOR EVALUATING HYDROLOGIC FLUXES, STATES, & CONSTITUENT TRANSPORT PROCESSES WITHIN AGRICULTURAL LANDSCAPES Title: Future opportunities and challenges in remote sensing of drought

Authors
item Brian, Wardlow -
item ANDERSON, MARTHA
item Sheffield, Justin -
item Doorn, Brad -
item Verdin, James -
item Zhan, Xiwu -
item Rodell, Matt -

Submitted to: Book Chapter
Publication Type: Book / Chapter
Publication Acceptance Date: October 31, 2011
Publication Date: N/A

Technical Abstract: Drought is a common feature of climate throughout the world with a broad footprint of impacts influencing natural systems and many sectors of society. This natural hazard can further exacerbate many important challenges confronting society today, including food security, freshwater availability, and economic sustainability. As a result, there has been a paradigm shift in drought management from reactive, crisis-based approaches to more proactive, risk-based strategies to reduce societal vulnerability to drought. Monitoring is a cornerstone of effective drought risk management, providing critical information to facilitate informed decision making to reduce risk and mitigate the effects of drought. The satellite remote sensing community has been challenged and will continue to be tasked with providing unique data sets for assessing key components of the hydrological cycle related to drought. Collectively, the potential of remote sensing to address this need is now beginning to be realized, as evidenced by the numerous new tools and techniques presented in this book. A full array of satellite-based information is now available to characterize precipitation inputs and surface and sub-surface moisture conditions, providing a more complete picture of drought conditions than ever before available. The innovative techniques and new types of earth observation that are now being applied for drought monitoring have laid the groundwork for further innovations, as new tools mature and new data from the proposed missions highlighted in this chapter become available. From a decision support perspective, the remote sensing scientist must be able to translate satellite-based earth observations and derivative products into useful, interpretable information for decision makers who often have non-scientific backgrounds. In order to improve capacity to use remote sensing-derived information in drought applications, drought experts and other decision makers should be involved in specifying their information requirements (accessibility, data types and formats, latency, and update frequency). To maximize the utilization of remote sensing observations in operational systems for drought monitoring and early warning, it is critical that these products be responsive to feedback from the drought user community.

Last Modified: 9/10/2014
Footer Content Back to Top of Page