Page Banner

United States Department of Agriculture

Agricultural Research Service

Research Project: USING REMOTE SENSING & MODELING FOR EVALUATING HYDROLOGIC FLUXES, STATES, & CONSTITUENT TRANSPORT PROCESSES WITHIN AGRICULTURAL LANDSCAPES Title: Monitoring drought at continental scales using thermal remote sensing

Authors
item Anderson, Martha
item Hain, Christopher -
item Mecikalski, John -
item Kustas, William

Submitted to: American Geophysical Union
Publication Type: Abstract Only
Publication Acceptance Date: October 3, 2009
Publication Date: December 15, 2009
Citation: Anderson, M.C., Hain, C.R., Mecikalski, J.R., Kustas, W.P. 2009. Monitoring drought at continental scales using thermal remote sensing [abstract]. American Geophysical Union. 90(52).

Technical Abstract: Thermal infrared (TIR) remote sensing of land-surface temperature (LST) provides valuable information about the sub-surface moisture status: soil surface temperature increases with decreasing water content, while moisture depletion in the plant root zone leads to stomatal closure, reduced transpiration, and elevated canopy temperatures that can be effectively detected from space. Empirical indices measuring anomalies in LST and vegetation amount (e.g., as quantified by the Normalized Difference Vegetation Index; NDVI) have demonstrated utility in monitoring drought conditions over large areas, but may provide ambiguous results when vegetation growth is limited by energy (radiation, air temperature) rather than moisture. A more physically based interpretation of LST and NDVI and their relationship to sub-surface moisture conditions can be obtained with a surface energy balance model driven by TIR remote sensing. In this approach, moisture stress can be quantified in terms of the reduction of evapotranspiration (ET) from the potential rate (PET) expected under non-moisture limiting conditions. The Atmosphere-Land Exchange Inverse (ALEXI) model couples a two-source (soil+canopy) land-surface model with an atmospheric boundary layer model in time-differencing mode to routinely and robustly map fluxes across the U.S. continent at 5-10km resolution using thermal band imagery from the Geostationary Operational Environmental Satellites (GOES). Finer resolution flux maps can be generated through spatial disaggregation using TIR data from polar orbiting instruments such as Landsat (60-120m) and MODIS (1km). A derived Evaporative Stress Index (ESI), given by 1-ET/PET, shows good correspondence with standard drought metrics and with patterns of antecedent precipitation, but can be produced at significantly higher spatial resolution due to limited reliance on ground observations. Because the ESI does not use precipitation data as input, it provides an independent means for assessing standard meteorologically-based drought indicators, and may be more robust in regions with limited monitoring networks. In this study, monthly maps of ESI anomalies for 2000-2008 are compared to standard drought indices and to drought classifications in the U.S. Drought Monitor. The ESI shows better skill in ranking drought severity than do precipitation-based indices composited over comparable time intervals. The thermal remote sensing inputs to ALEXI detect drought conditions even under the dense forest cover along the East Coast of the United States, where microwave soil moisture retrievals typically lose sensitivity. On the other hand, microwave observations are not constrained by cloud cover and provide better temporal continuity, but typically at significantly lower spatial resolution. A merged TIR-microwave moisture anomaly product may have potential for optimizing both spatial and temporal coverage in continental-scale drought monitoring.

Last Modified: 10/25/2014
Footer Content Back to Top of Page