Page Banner

United States Department of Agriculture

Agricultural Research Service

Research Project: USING REMOTE SENSING & MODELING FOR EVALUATING HYDROLOGIC FLUXES, STATES, & CONSTITUENT TRANSPORT PROCESSES WITHIN AGRICULTURAL LANDSCAPES Title: Land Data Assimilation Activities in Preparation of the NASA Soil Moisture Active Passive (SMAP)Mission

Authors
item Crow, Wade
item Reichle, Rolf -
item Koster, Randy -

Submitted to: World Meteorological Organization
Publication Type: Proceedings
Publication Acceptance Date: October 1, 2009
Publication Date: January 20, 2010
Citation: Crow, W.T., Reichle, R., Koster, R. Land data assimilation activities in preparation of the NASA Soil Moisture Active Passive (SMAP) Mission. In: Proceedings of the World Meteorological Organization, October 10-13, 2009, Melbourne, Australia. 2009 CDROM.

Technical Abstract: Slated for launch in 2013, the NASA Soil Moisture Active/Passive mission represents a significant advance in our ability to globally observe time and space variations in surface soil moisture fields. The SMAP mission concept is based on the integrated use of L-band active radar and passive radiometry measurements to optimize both the accuracy and resolution of remotely-sensed surface soil moisture estimates. Data assimilation activities represent a critical linkage between SMAP products and eventual science and operational applications. In particular, SMAP mission plans call for the generation of a dedicated data assimilation product to vertically extrapolate near-surface (0 to 5-cm) soil moisture retrievals to produce deeper, root-zone (0 to 1-m) soil moisture estimates required by many data end users. To meet this goal, a global Ensemble Kalman filtering (EnKF) land data assimilation system capable of assimilating SMAP data products into a vertically-discretized land surface model is currently under development at the NASA Global Modeling and Data Assimilation Office (GMAO). This system will be used to generate an official Level 4 SMAP “surface and root-zone” (L4_SM) soil moisture product. The use of data assimilation techniques to generate an official NASA earth science mission data product represents an important milestone in the application of land data assimilation to terrestrial remote sensing. This paper will describe the SMAP L4_SM surface and root-zone soil moisture system in details and summarize recent Observing System Simulation Experiment (OSSE) results aimed at quantifying the added value of SMAP soil moisture retrievals for global root-zone soil moisture monitoring activities. Existing applications already posses access to soil moisture estimates derived from off-line water balance models forced by observed rainfall, radiative forcings and micro-meteorology variables. Clarifying the added value of assimilating remotely-sensed surface soil moisture retrievals into such systems (relative to this existing baseline) is important for articulating expected SMAP impacts on key applications.

Last Modified: 12/18/2014
Footer Content Back to Top of Page