Page Banner

United States Department of Agriculture

Agricultural Research Service

Research Project: CONSERVATION EFFECTS ASSESSMENT IN THE SOUTH GEORGIA LITTLE RIVER

Location: Southeast Watershed Research

Title: Study of a Complex Landscape For Satellite and Field Estimations of Soil Water

Authors
item Giraldo, Mario - UGA
item Madden, Margueritte - UGA
item Grundstein, Andrew - UGA
item Bosch, David

Submitted to: American Society of Agronomy Meetings
Publication Type: Abstract Only
Publication Acceptance Date: June 1, 2007
Publication Date: November 4, 2007
Citation: Giraldo, M., Madden, M., Grundstein, A., Bosch, D.D. 2007. Study of a Complex Landscape For Satellite and Field Estimations of Soil Water [abstract]. American Society of Agronomy Meetings Annual Meeting November 4-7, 2007, New Orleans, Louisiana.

Technical Abstract: Using satellite and field data to investigate soil moisture is a developing process challenged by the landscape complexity of most terrestrial ecosystems. Landscapes are complex systems formed by spatial units (fragments) in which biophysical factors fluctuate according to soil and landuse characteristics. This research uses a multidisciplinary approach to explore the relationships between fragments and process in complex landscapes. I investigate at the Little River Watershed (LRW) Georgia US, how the spatial complexity of the landscape caused by different combinations of soil types and land uses influences the spatial extension of soil moisture and ground temperature within areas equivalent to the pixel sizes of four environmental satellites. The purpose was to define landscape-based criteria to use satellite data in direct and indirect assessment of soil moisture and to define the spatial extend for which single point readings can be used to estimate soil moisture conditions under complex landscapes. The methods include the creation of a GIS database for soil and land cover at <10m spatial resolution, distance and area spatial analysis for field point data and hydrological modeling for five different soil types. Supported by rigorous statistical analysis such as analysis of variance, t-test, descriptive statistics, correlation analysis, time stability analysis, and generalize linear model, the results include: 1. Criteria to define the appropriate pixel sizes of a satellite instrument to study soil moisture (SM) and ground temperature at the LRW. 2. Understanding effects of landscape and local complexity and their weight in point readings. 3. The assessment of SM response by different soils and land cover combinations. Overall, this research contributes to satellite study of the water cycle by proposing a landscape ecology–hydrology approach to the problems of point reading interpolation and remote sensing of SM within complex landscapes.

Last Modified: 4/21/2014
Footer Content Back to Top of Page