Page Banner

United States Department of Agriculture

Agricultural Research Service


item Stover, Ed
item Maccree, Mary
item Aradhya, Mallikarjuna
item McClean, Ali
item Kluepfel, Daniel

Submitted to: Walnut Research Conference
Publication Type: Proceedings
Publication Acceptance Date: January 1, 2007
Publication Date: January 1, 2007
Citation: Stover, E.W., Maccree, M.M., Aradhya, M.K., Mcclean, A.E., Kluepfel, D.A. 2007. Evaluation of wild juglans species for crown gall resistance. Walnut Research Conference.

Technical Abstract: Crown Gall disease of walnut is caused by the ubiquitous soil-borne bacterium, Agrobacterium tumefaciens which is able to transfer a specific piece of its own DNA into the genome of the plant host cell. The result of this genetic transformation is the autonomous undifferentiated massive growth of infected plant cells which generates the most obvious symptom of this disease, plant galls or tumors. Paradox rootstocks are widely used in CA walnut production. These rootstocks are usually interspecific hybrids between J. hindsii and J. regia (Howard, 1945), which are typically highly susceptible to Agrobacterium tumefaciens. Extensive formation of tumors around the crown of the tree can often stunt the tree and result in reduced vigor and yields. If left untreated, tumors continue to grow and completely girdle the tree which contributes to premature death of the tree. Currently, Crown Gall Disease in mature orchards is managed using surgery to remove the gall and adjacent infected tissues. Durable host resistance is the preferred form of resistance to all soil borne plant pathogens. This is especially important for Crown Gall Disease given the fact that Agrobacterium spp are found in the soil in all the walnut growing regions of California examined. The wild relatives of cultivated species are often a rich source of genes coding for such desirable traits as, resistance to insect pests and microbial pathogens, and abiotic stresses. Identification of a durable source of resistance to crown gall in the Juglans germplasm collection, that could be utilized directly or introgressed into commercially viable rootstocks, is likely to be an effective strategy for controlling crown gall disease in walnut. The walnut germplasm collection at the National Clonal Germplasm Repository, USDA-ARS in Davis, CA represents a wide range of intra- and interspecific diversity for some of the black walnuts and butternuts that are adapted to California conditions. The potentially useful black walnut species include J. hindsii, J. nigra, J. microcarpa, J. major, in addition to some of their hybrids with cultivated species. The Asian butternuts, J. ailantifolia, J. mandshurica, and J. cathayensis, which grow well in the germplasm collection, also could be used directly or in the development of Crown Gall resistant interspecific hybrids. Although wild species have contributed to walnut rootstock development programs, the range of genetic variation for crown gall resistance within and between these wild species has never been examined. It is anticipated that a systematic evaluation of the Juglans germplasm for crown gall resistance will unravel a hitherto unknown source of resistance/tolerance to crown gall disease and other plant pathogens. As a step towards development of crown gall resistant rootstocks, here we report on the identification of Juglans species exhibiting resistance/tolerance to infection by A. tumefaciens EC1. Once identified, these novel sources of Agrobacterium resistance can be exploited in the ongoing U.C. Davis Walnut root stock breeding program to help reduce the incidence of Crown Gall in both nursery and production fields. Objective Identify and characterize a novel source of Crown Gall (CG) resistance in the Juglans germplasm collection maintained in the USDA/ARS National Clonal Germplasm Repository in Davis, CA. Anticipated Outcome We anticipate the identification of a new source of Crown Gall resistance which will be useful in the development of Crown Gall resistant rootstocks in the UC Davis walnut breeding program. The germplasm thus identified also will be shared with other pathologists and horticulturists for further evaluation for resistance to other diseases, especially Phytophthora and to test for their ability to propagate vegetatively. Procedures Seedling germination and inoculation. Open pollinated seeds were collected from each of the black walnut and butternut accessions maintained at the Wolfskill Experimental Orchards in Winters, CA. Seeds were cold treated, germinated and grown under glasshouse conditions. Once the seedlings reach a trunk diameter of at least 0.5cm the crown of the trees were inoculated with A. tumefaciens strain EC1. Depending on germination and growth rates, 4-6 trees from each accession were screened. Seedlings were inoculated by generating a “T-cut” 1-2mm deep at the crown, in to which either 500ul or 300ul of a 107 cells/ml suspension of EC-1 was introduced by micropipet. After inoculation, the wound was closed and wrapped in parafilm. Standard cultural practices were followed during the experiment and observations on tumor development were recorded at monthly intervals by noting first-appearance and then recording tumor size. To confirm virulence of EC1, susceptible Paradox seedlings were inoculated with EC1 as described above. To assess typical wounding response in absence of the pathogen, Paradox seedlings and a variety of accessions from the germplasm collection were inoculated as described above with the exception that EC1 was replaced with sterile water. Evaluation of inoculated saplings. Tumor formation was monitored at two weeks (indicates monthly in paragraph above) intervals following inoculation. Relative rates and trends in tumor initiation and formation in different germplasm assessions were noted and recorded. Tumor size was measured and recorded for each seedling at 60 days post-inoculation. Photos of each seedling were taken at various intervals following inoculation. Seedlings were monitored for three to six months after inoculation to monitor for late-forming or slow growing tumors. To confirm the durability of observed resistance throughout a natural growing cycle, previously inoculated saplings were cold-treated and allowed to go dormant. After emerging from dormancy, saplings were monitored for tumor formation during a second growing season. Saplings which continue to show resistance or “limited susceptibility” will be reinoculated in subsequent growing seasons after the original inoculation. These reinoculated plants will be handled as described above for the original inoculation series. Objective: Identification of a novel source of Crown Gall (CG) resistance in the Juglans germplasm collection maintained in the USDA/ARS National Clonal Germplasm Repository in Davis, CA. During the 2005 growing season, a total of 313 seedlings from 116 mother trees representing four species of black walnut (J. hindsii, J. nigra, J. microcarpa, and J. major); three of butternuts (J. ailantifolia, J. mandshurica, and J. cathayensis); and J. sinensis were tested for resistance to Crown Gall Disease. For the 2006 screening, additional germplasm from wingnut and butternut species were added to the study. A significant number of J. microcarpa accessions found promising form the 2005 study failed to germinate in 2006 and could not be investigated. During the 2006 season, a total of 468 seedlings form 85 mother trees representing the English walnut (J. regia), and its conspecific taxon, J. sinensis, five species of black walnut (J. hindsii, J, nigra, J. microcarpa, J. californica and J. major), three butternuts (J. ailantifolia, J. mandshurica, and J. cathayensis), a wingnut species (Pterocarya stenoptera), and a small number of intergenic hybrids were evaluated.

Last Modified: 11/28/2015
Footer Content Back to Top of Page