Page Banner

United States Department of Agriculture

Agricultural Research Service

Title: Monitoring Wetland Hydrology at a Watershed Scale: Dynamic Information for Adaptive Management

Authors
item LANG, MEGAN
item ANDERSON, MARTHA
item MCCARTY, GREGORY

Submitted to: Soil and Water Conservation Society
Publication Type: Abstract Only
Publication Acceptance Date: January 24, 2007
Publication Date: July 21, 2007
Citation: Lang, M.W., Anderson, M.C., McCarty, G.W. 2007. Monitoring wetland hydrology at a watershed scale: Dynamic information for adaptive management [abstract]. Soil and Water Conservation Society. p. 38.

Technical Abstract: Wetlands provide many beneficial services, including water quality improvement and floodwater reduction. These services are performed through the interaction of multiple landscape components (e.g., agricultural fields, forests, urban areas, and wetlands) and therefore should be considered at the watershed scale. Hydrology (i.e., flooding and soil moisture) controls wetland function, and must be better understood to conserve remaining wetlands, monitor wetland function, and improve water quality management. Broad-scale forested wetland hydrology is difficult to monitor using ground-based and traditional remote sensing methods (i.e., aerial photography). C-band synthetic aperture radar (SAR) data can improve the capability to monitor forested wetland hydrology. The information derived from SAR can be easily updated through time to better inform adaptive, watershed scale management through the use of this information in water quality models and other decision support systems. However, the full potential of these data needs further investigation. Research is being conducted to support the use of SAR for monitoring forested wetland hydrology at a watershed scale. Forest hydrology has been mapped for the Choptank River Watershed, Maryland and a hydroperiod time series has been developed to better represent the dynamic nature of this ecosystem variable. Maps of forested wetland hydrology were compared with the U.S. Fish and Wildlife Service’s National Wetlands Inventory, the Natural Resources Conservation Service’s Soil Survey Geographic Database, and in situ data. Results are encouraging and opportunities are being explored to include this metric, as well as other biophysical parameters, in spatially explicit water quality models and other decision support systems.

Last Modified: 7/25/2014
Footer Content Back to Top of Page