Page Banner

United States Department of Agriculture

Agricultural Research Service

Research Project: IMPROVING SOIL AND NUTRIENT MANAGEMENT SYSTEMS FOR SUSTAINED PRODUCTIVITY AND ENVIRONMENTAL QUALITY

Location: Soil Plant Nutrient Research (SPNR)

Title: Effect of Crop Rotation, Tillage, and Soil Series on Soil Organic Carbon Sequestration.

Authors
item Follett, Ronald
item Del Grosso, Stephen
item Wallace, James - COLONIAL SWC RICHMOND, VA

Submitted to: American Society of Agronomy Abstracts
Publication Type: Other
Publication Acceptance Date: October 13, 2006
Publication Date: November 12, 2006
Citation: Follett, R.F., Del Grosso, S.J., Wallace, J. 2006. Effect of Crop Rotation, Tillage, and Soil Series on Soil Organic Carbon Sequestration. American Society of Agronomy Abstracts on CD ROM.

Technical Abstract: Farm fields in eastern Virginia with corn-soybean and corn-small grain-soybean rotations from multiple farms were sampled to depths of 0-10 and 10-20 cm to measure soil organic carbon (SOC) sequestration for ‘continuous no-till’ (no-till) vs. ‘conventional no-till’ (conv-till) (tillage prior to small grain). Cropping sequences include combinations of corn, small grain, and soybean for 3 coarse-textured soils. Soil samples were analyzed for SOC and soil bulk density. Extensive prior information (past 5 years) on crop rotations, nutrients applied, tillage, and crop yields were collected for each field. Tillage significantly affected SOC in the 0-10 and in the 0-20 cm depth increments. Soil series was different in the 10-20 cm depth increment and there was a soil by depth interaction when both depths were considered. Importantly, the data collected allow the ‘DAYCENT’ computer model to be calibrated to these soils. Corresponding weather records were obtained for the same 5-year period from the Richmond climate station and model simulations were run for each field. Use of the DAYCENT model provides a practical method to project rates of SOC sequestration and N2O emissions into the future under no-till and conv-till systems. DAYCENT can also provide information that may be useful should carbon (C) trading or C markets develop for agricultural producers. A SOC increase is projected for each of the soil series with that for the Alta Vista being the largest. SOC sequestration increased for both no-till and conv-till to 10 years but the increase was larger for no-till.

Last Modified: 7/24/2014
Footer Content Back to Top of Page