Page Banner

United States Department of Agriculture

Agricultural Research Service

Research Project: DEVELOPMENT OF IMAGING TECHNOLOGY FOR FOOD SAFETY AND SECURITY Title: Bone Fragment Detection in Chicken Breast Fillets using Diffuse Scattering Patterns of Back-Illuminated Structured Light

Authors
item Yoon, Seung-Chul
item Lawrence, Kurt
item Smith, Douglas
item Park, Bosoon
item Windham, William

Submitted to: Proceedings of SPIE
Publication Type: Proceedings
Publication Acceptance Date: October 2, 2006
Publication Date: October 20, 2006
Citation: Yoon, S.C., Lawrence, K.C., Smith, D.P., Park, B., Windham, W.R. 2006. Bone fragment detection in chicken breast fillets using diffuse scattering patterns of back-illuminated structured light. Proceedings of SPIE, 6381.

Interpretive Summary: Bone fragments embedded in poultry products pose a physical hazard to consumers, especially, to children, may cause injury, and thus, need to be detected. The predominant technology for bone detection is X-ray imaging which is based on the projection of ionizing radiation through a meat sample onto an image detector. Optical imaging which is based on non-ionizing radiation at the visible and near-infrared spectral range of light has not been fully explored to measure the internal and functional information of uncooked or cooked poultry products. The objective of this study was to develop an optical image processing algorithm for detecting broken bones in uncooked skinless chicken breast meat by enhancing image contrasts. The study found a new image enhancement technique in order to remove non-uniform illumination effects that often lead to low contrast images. This finding may contribute to the development of an online and real-time bone detection system.

Technical Abstract: This paper is concerned with the detection of bone fragments embedded in de-boned skinless chicken breast fillets by modeling images made by back-lighting and embedded bone fragments. Imaging of chicken fillets is often dominated by strongly multiple scattering properties of the fillets. Thus, resulting images from multiple scattering are diffused, scattered and low contrast. In this study, both transmittance and reflectance hyperspectral imaging, which is a non-ionized and non-destructive imaging modality, is investigated as an alternative method to the conventional transmittance X-ray imaging technique which is an ionizing imaging modality. As a way of reducing the influence of light scattering on images and thus increasing the image contrast, the use of a structured line light is examined along with an image formation model that separates undesirable lighting effects from an image. The image formation model based on an illumination-transmittance model is applied for correcting non-uniform illumination effects so that embedded bones are more easily detected by a global threshold. An automated image processing algorithm to detect bones is also proposed. Experimental results with chicken breast fillets and bone fragments are provided.

Last Modified: 11/22/2014
Footer Content Back to Top of Page