Page Banner

United States Department of Agriculture

Agricultural Research Service

Title: Insect Damage Detection in Wheat Kernels Using Transmittance Images

item Cataltepe, Zehra - SIEMENS CORP
item Pearson, Thomas
item Cetin, Enis - BILKENT UNIV, TURKEY

Submitted to: Meeting Proceedings
Publication Type: Research Notes
Publication Acceptance Date: May 14, 2004
Publication Date: N/A

Technical Abstract: We used transmittance images and different learning algorithms to classify insect damaged and un-damaged wheat kernels. Using the histogram of the pixels of the wheat images as the feature, and the linear model as the learning algorithm, we achieved a False Positive Rate (1-specificity) of 0.12 at the True Positive Rate (sensitivity) of 0.8 and an Area Under the ROC Curve (AUC) of 0.90 ± 0.02. Combining the linear model and a Radial Basis Function Network in a committee resulted in a FP Rate of 0.09 at the TP Rate of 0.8 and an AUC of 0.93 ± 0.03.

Last Modified: 4/22/2015
Footer Content Back to Top of Page