Page Banner

United States Department of Agriculture

Agricultural Research Service

Title: Elucidation of the Molecular Basis of the Host Plant-Aspergillus flavus Interaction, a Basis for Devising Strategies to Reduce Aflatoxin Contamination in Crops

Authors
item Cleveland, Thomas
item Yu, Jiujiang
item Bhatnagar, Deepak
item Chen, Zhiyuan - LSU BATON ROUGE LA
item Brown, Robert
item Chang, Perng Kuang
item Cary, Jeffrey

Submitted to: Journal of Toxicology Toxins Reviews
Publication Type: Review Article
Publication Acceptance Date: October 1, 2003
Publication Date: May 1, 2004
Citation: Cleveland, T.E., Yu, J., Bhatnagar, D., Chen, Z.-Y., Brown, R.L., Chang, P.-K., Cary, J.W. 2004. Elucidation of the molecular basis of the host plant-Aspergillus flavus interaction, a basis for devising strategies to reduce aflatoxin contamination in crops. In: Shier, W.T., Tu, A.T., Yu, C., Abbas, H.K., editors. Journal of Toxicology - Toxin Reviews. New York, NY: Marcel Dekker, Inc. 23(2,3):345-380.

Technical Abstract: Understanding the complex interrelationships of plant and fungal gene products during the host plant-Aspergillus flavus interaction is key in developing strategies to interrupt the aflatoxin contamination process. Fungal processes necessary for invasion of the plant and production of aflatoxin can be broken down into three categories: 1) cell wall degradation (cellulases, pectinases, amylases and proteinases), 2) fungal development (cell wall synthesis and conidiophore and conidial formation), and 3) aflatoxin biosynthesis and regulation. Fungal Expressed Sequence Tag (EST) projects have led to a rapid expansion in the number of candidate genes governing the processes involved in invasion of the plant and aflatoxin contamination. Plant factors have been discovered through the use of proteomics and natural product chemistry that may influence fungal processes involved in invasion and aflatoxin contamination. These factors can also be divided into three categories: 1) seed proteins/inhibitors of fungal cell wall degrading enzymes, 2) seed/kernel natural products which may influence fungal growth and/or aflatoxin synthesis, and 3) plant stress responsive proteins. If the interaction between the plant and the fungus can be better understood through use of proteomics, genomics and natural product chemistry, particularly in how plant factors may influence fungal processes contributing to virulence and aflatoxin contamination, this information could accelerate development of breeding through marker selection and/or gene insertion technologies for enhancing host plant resistance.

Last Modified: 12/20/2014
Footer Content Back to Top of Page