Skip to main content
ARS Home » Southeast Area » Gainesville, Florida » Center for Medical, Agricultural and Veterinary Entomology » Insect Behavior and Biocontrol Research » Research » Publications at this Location » Publication #143565

Title: LASIODERMA SERRICORNE (COLEOPTERA: ANOBIIDAE): SPATIAL RELATIONSHIP BETWEEN TRAP CATCH AND DISTANCE FROM A SOURCE OF INFESTATION

Author
item Arbogast, Richard
item Kendra, Paul
item Chini, Shahpar

Submitted to: Florida Entomologist
Publication Type: Peer Reviewed Journal
Publication Acceptance Date: 10/3/2003
Publication Date: 1/20/2004
Citation: Arbogast, R.T., Kendra, P.E., Chini, S.R. 2004. Lasioderma Serricorne (Coleoptera: Anobiidae): spatial relationship between trap catch and distance from a source of infestation. Florida Entomologist. 86(4):437-444.

Interpretive Summary: Insect pests are a perennial problem in buildings, such as rice, flour and feed mills, warehouses, and retail stores, where they damage and contaminate susceptible commodities such as food products and animal feed. Pest management in these situations has relied heavily on chemical insecticides and fumigants, such as methyl bromide. With increasing emphasis being placed on integrated pest management to minimize pesticide risk, regular monitoring to detect and locate infestation has assumed greater importance. ARS scientists at the Center for Medical, Agricultural and Veterinary Entomology in Gainesville, Florida, have developed a new monitoring method that uses a combination of trapping and spatial analysis of trap catch by contour mapping. The value of the method lies in its ability to locate as well as detect infestation and in the utility of contour maps for documentation and communication. The maps provide graphic, easily understood evidence of insect infestation and the effectiveness of control measures. They are thus of considerable value in communicating insect problems among managers and maintenance, sanitation, and pest control personnel. The method will help reduce pesticide risk by guiding the timing and targeting of control applications, eliminating the need for routine preventive treatment, reducing the area treated with insecticides, and aiding in the application of nonchemical methods. The method has already gained some acceptance by the pest control and food processing industry, and acceptance is expected to expand.

Technical Abstract: The cigarette beetle, Lasioderma serricorne (Fabricius), was selected as a representative stored-product beetle to test the validity of contour mapping of trap catch for pest monitoring in warehouses and retail stores. Three experiments, each replicated 5 times, were conducted in a 3.2 x 9.0-m aluminum shed. Each experiment involved releasing beetles and recording the numbers captured after 6, 24, and 48 h in each of 14 baited pitfall traps distributed over the floor of the shed. The experiments differed only with respect to the point of release. Releases were made by placing boxes containing beetles and rearing diet at one of the 3 release points and opening them. Consecutive contour maps of trap catch tracked the dispersal of beetles from each of the release points. As the beetles dispersed and total trap catch increased, the outlying traps captured increasingly more insects, but cumulative trap catch remained highest near the release points. The cumulative numbers captured by any trap after 6, 24, and 48 h decreased exponentially with distance from the point of release. The observed spatial patterns of trap catch relative to sources of infestation and the inverse relationship of trap catch to distance from a source support the validity of contour mapping as a means of monitoring stored-product insects and locating foci of infestation.