Skip to main content
ARS Home » Pacific West Area » Albany, California » Western Regional Research Center » Bioproducts Research » Research » Publications at this Location » Publication #351848

Research Project: Bioproducts from Agricultural Feedstocks

Location: Bioproducts Research

Title: Solution blow spun spinel ferrite and highly porous silica nanofibers

Author
item FARIAS, ROSIANE - Federal University Of Campina Grande
item SEVERO, LUCAS - Federal University Of Campina Grande
item COSTA, DANUBIA - Federal University Of Campina Grande
item MEDEIROS, ELITON - Universidade Federal Da Paraiba (UFPB)
item Glenn, Gregory - Greg
item SANTATA, LISIANE - Federal University Of Campina Grande
item NEVES, GELMIRES - Federal University Of Campina Grande
item KIMINAMI, RUTH - Universidade Federal De Sao Carlos
item MENEZESA, ROMUALDO - Federal University Of Campina Grande

Submitted to: Ceramics International
Publication Type: Peer Reviewed Journal
Publication Acceptance Date: 3/12/2018
Publication Date: 3/9/2018
Citation: Farias, R.M., Severo, L.L., Costa, D.L., Medeiros, E.S., Glenn, G.M., Santata, L.N., Neves, G., Kiminami, R.H., Menezesa, R.R. 2018. Solution blow spun spinel ferrite and highly porous silica nanofibers. Ceramics International. 44(9):10984-10989. https://doi.org/10.1016/j.ceramint.2018.03.099.
DOI: https://doi.org/10.1016/j.ceramint.2018.03.099

Interpretive Summary: Novel Ceramic Nanofibers Nanostructured ceramic fibers are of considerable interest in many electronic applications for reducing energy losses compared to currently used materials. Researchers in Brazil in cooperation with ARS researchers in Albany, CA used a nanofiber spinning process developed in Albany to make novel ceramic nanofibers with potential applications in the electronic industry.

Technical Abstract: The novelty of this work is the production of nano- and submicrometric silica and spinel-ferrite fibers using the solution blow spinning (SBS) method. A pseudo-core-shell method for the production of large surface area silica fibers is also reported. Silica fibers present mean diameters and specific surface areas ranging from 280'nm to 640'nm and from 140'm2/g to 630'm2/g, respectively, while spinel-ferrite fibers of nickel ferrite and nickel-zinc ferrite show mean diameters of 180'nm. Spun materials display a cotton-like morphology and are produced at higher output rates than those achieved by current spinning technologies.