Skip to main content
ARS Home » Southeast Area » Fort Pierce, Florida » U.S. Horticultural Research Laboratory » Subtropical Insects and Horticulture Research » Research » Publications at this Location » Publication #316263

Title: Insect Resistance

Author
item EMANI, CHANDRAKKANTH - University Of Kentucky
item Hunter, Wayne

Submitted to: Genomics and Breeding for Climate-Resilient Crops
Publication Type: Book / Chapter
Publication Acceptance Date: 1/4/2013
Publication Date: 4/25/2013
Citation: Emani, C., Hunter, W.B. 2013. Insect Resistance. Genomics and Breeding for Climate-Resilient Crops. Chapter 9, Vol:2, pages 315-332.

Interpretive Summary: Insect pests exhibit a diverse array of genetic-based responses when interacting with crop systems; these changes can be in response to pathogens, symbiotic microbes, host plants, chemicals, and the environment. Agricultural research has for decades focused on gathering crucial information on the biochemical, genetic, and molecular realms that deal with plant–insect interactions in changing ecosystems. Environmental conditions, which include the overall conditions of climate change, are a reality that needs to be considered as one of the crucial phenomena of changing ecosystems when planning future crop security and/or pest management strategies. This book chapter attempts to integrate the past and present research in classical and molecular breeding, transgenic technology, and pest management within the context of climate change.

Technical Abstract: Insect pests exhibit a diverse array of genetic-based responses when interacting with crop systems; these changes can be in response to pathogens, symbiotic microbes, host plants, chemicals, and the environment. Agricultural research has for decades focused on gathering crucial information on the biochemical, genetic, and molecular realms that deal with plant–insect interactions in changing ecosystems. Environmental conditions, which include the overall conditions of climate change, are a reality that needs to be considered as one of the crucial phenomena of changing ecosystems when planning future crop security and/or pest management strategies. Focused research in documenting the interactions that occur between crop systems and insect pests under changing climates will be a needed addition to current research efforts whose aim is to define future strategies that crop scientists relate to the broader societal concerns of food security in an ever-changing environment. This chapter attempts to integrate the past and present research in classical and molecular breeding, transgenic technology, and pest management within the context of climate change. The integrated approach will direct present research efforts that aim at creating plant–insect pest interaction–climate change models that reliably advise future strategies to develop improved insect-resistant, climate-resilient plant varieties.