Page Banner

United States Department of Agriculture

Agricultural Research Service

Research Project: Sustainable Vineyard Production Systems Title: Analysis of HRCT-derived xylem network reveals reverse flow in some vessels

Authors
item Lee, Eric -
item Matthews, Mark -
item McElrone, Andrew
item Phillips, Ronald -
item Shackel, Kenneth -
item Brodersen, Craig -

Submitted to: Journal of Theoretical Biology
Publication Type: Peer Reviewed Journal
Publication Acceptance Date: May 23, 2013
Publication Date: June 4, 2013
Repository URL: http://ac.els-cdn.com/S0022519313002506/1-s2.0-S0022519313002506-main.pdf?_tid=6413ecbc-feba-11e2-b372-00000aab0f01&acdnat=1375808907_6b97c5a85ceb0a17144ced1ce75eecac
Citation: Lee, E.F., Matthews, M.A., Mcelrone, A.J., Phillips, R.J., Shackel, K.A., Brodersen, C.R. 2013. Analysis of HRCT-derived xylem network reveals reverse flow in some vessels. Journal of Theoretical Biology. 333:146-155.

Interpretive Summary: In order to better understand the dynamics of water transport within grapevine xylem, we used data generated from advanced visualization techniques (CT scans) to build a model that simulates flow based on actual anatomical data. These efforts revealed that water can actually flow in the opposite direction (i.e. towards the roots) when the bulk of water is flowing strongly towards the leaves. This mechanism helps to partially explain how pathogens (like Xylella fastidiosa that cause Pierce’s disease in grapevines) could move against the flow of water in host plant vasculature. We also built a life sized model to simulate and provided a supplemental movie to the journal to clearer illustrate this reverse flow mechanism.

Technical Abstract: Flow in xylem vessels is modeled based on constructions of three dimensional xylem networks derived from High Resolution Computed Tomography (HRCT) images of grapevine (Vitis vinifera) stems. Flow in 6-14% of the vessels was found to be oriented in the opposite direction to the bulk flow under normal transpiration conditions. Based on the calculated flow rates in the xylem network, the downward spread of Xylella fastidiosa bacteria in grape stems was modeled, and reverse flow was shown to provide an additional mechanism for the movement of bacteria to the trunk of grapevine.

Last Modified: 12/22/2014
Footer Content Back to Top of Page