Page Banner

United States Department of Agriculture

Agricultural Research Service

Research Project: USING REMOTE SENSING & MODELING FOR EVALUATING HYDROLOGIC FLUXES, STATES, & CONSTITUENT TRANSPORT PROCESSES WITHIN AGRICULTURAL LANDSCAPES Title: Utility of Thermal-based Dual-Temperature-Difference Technique under Strongly Advective Conditions during BEAREX08

Authors
item Kustas, William
item Alfieri, Joseph
item Anderson, Martha
item Colaizzi, Paul
item Prueger, John
item Chaves, Jose -
item Neale, Christopher -
item Dulaney, Wayne
item Copeland, Karen
item Howell, Terry

Submitted to: International Association of Hydrological Science
Publication Type: Proceedings
Publication Acceptance Date: February 22, 2011
Publication Date: September 21, 2012
Citation: Kustas, W.P., Alfieri, J.G., Anderson, M.C., Colaizzi, P.D., Prueger, J.H., Chaves, J.L., Neale, C.M., Dulaney, W.P., Copeland, K.S., Howell, T.A. 2012. Utility of thermal-based dual-temperature-difference technique under strongly advective conditions during BEAREX08. International Association of Hydrological Science. 352:145-148.

Technical Abstract: Application of most thermal remote sensing-based energy balance models requires meteorological inputs of wind speed and air temperature. These are typically obtained from the nearest weather station which is often situated in a non-ideal location having limited fetch. In addition, the uncertainty of surface temperature estimates can be several degrees due to sensor calibration issues, atmospheric effects and variation in surface emissivity. The Dual-Temperature-Difference (DTD) method, which uses a double difference of the time rate of change in radiometric and air temperature observations, was developed to reduce errors associated with deriving the temperature gradient in complex landscapes, such as agricultural environments having a patchwork of irrigated and non-irrigated fields. The scheme is relatively simple, requiring minimal ground-based data and meteorological input from an existing synoptic weather station network. The utility of this scheme is tested with ground-based radiometric temperature observations from the Bushland Evapotranspiration and Agricultural Remote Sensing Experiment 2008 (BEAREX08), conducted in semi-arid climate of the Texas High Plains.

Last Modified: 4/25/2014