Page Banner

United States Department of Agriculture

Agricultural Research Service

Research Project: AERIAL APPLICATION RESEARCH FOR EFFICIENT CROP PRODUCTION Title: Multisensor data fusion of remotely sensed imagery for crop field mapping

Authors
item Lan, Yubin
item Zhang, Huihui -
item Yang, Chenghai
item Zhao, Kaiguang -
item Huang, Yanbo
item Hoffmann, Wesley
item Lacey, Ron -

Submitted to: International Conference on Precision Agriculture Abstracts & Proceedings
Publication Type: Proceedings
Publication Acceptance Date: July 5, 2010
Publication Date: July 18, 2010
Citation: Lan, Y., Zhang, H., Yang, C., Zhao, K., Huang, Y., Hoffmann, W.C., Lacey, R. 2010. Multisensor data fusion of remotely sensed imagery for crop field mapping. International Conference on Precision Agriculture Abstracts & Proceedings. CDROM.

Interpretive Summary: A wide variety of remote sensing data from airborne and satellite platforms is available for site-specific management in agricultural application and production. Aerial image and satellite hyperspectral data were used for mapping crop growth and health status. These results indicate that aerial imagery in conjunction with multisensory data fusion techniques can be a useful tool for mapping crop fields.

Technical Abstract: A wide variety of remote sensing data from airborne and satellite platforms is available for site-specific management in agricultural application and production. Aerial imaging system may offer less expensive and high spatial resolution imagery with Near Infra-Red, Red, Green and Blue spectral wavebands. Space-based hyperspectral sensor such as the Hyperion provides hundreds of spectral bands with low-resolution. Multisensor data fusion provides an effective paradigm for remote sensing applications by synthesizing data from multiple sensors or sources. A high-resolution CIR aerial photo can be integrated with low-resolution hyperspectral images to complement each other for the improved information extraction. Aerial photos can be processed by the state-of-the-art image segmentation algorithms to generate individual objects that often correspond to physically meaningful entities, e.g., a crop land unit growing cotton. Hyperspectral data, commonly with hundreds of spectral bands, can be analyzed using conventional approaches such as spectral indices or possibly more effectively, using advanced data mining models or machine learning algorithms such as support vector machines and Gaussian processes models for accurate retrieval of quantitative information.

Last Modified: 9/1/2014
Footer Content Back to Top of Page